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ABSTRACT

Lateral Resistance of Pipe Piles Near 20-ft Tall MSE Abutment
Wall with Strip Reinforcements

Jason James Besendorfer
Department of Civil and Environmental Engineering, BYU
Master of Science

Full scale lateral load testing was performed on four 12.75x0.375 pipe piles spaced at 3.9,
2.9, 2.8, and 1.7 pile diameters behind an MSE wall which was constructed for this research to
determine appropriate reduction factors for lateral pile resistance based on pile spacing behind
the back face of the wall. The load induced on eight soil reinforcements located at various
transverse distances from the pile and at different depths was monitored to determine the
relationship between lateral load on the pile and load induced in the reinforcement. Each pile was
loaded towards the wall in 0.25 in. increments to a total deflection of 3.0 in. Additionally, wall
panel displacement was also monitored to determine if it remained in acceptable bounds.

The results of the research indicate that pile resistance tends to decrease as spacing
decreases. P-multipliers for the 3.9, 2.9, 2.8, 1.7D tests were found to be 1.0, 1.0, 1.0, and 0.5,
respectively using back-analysis with the computer model LPILE. However, these multipliers are
higher than expected based on previous testing and research. Piles spaced further than 3.8D can
be assumed to have no interaction with the wall. The resistance of piles spaced closer to the wall
than 3.8D can be modeled in LPILE using a p-multiplier less than 1.0. The reinforced backfill
can be modeled in LPILE using the API Sand (1982) method with a friction angle of 31° and a
modulus of approximately 60 pci when a surcharge of 600 psf'is applied. If no surcharge is
applied, a friction angle of 39° and modulus of 260 pci is more appropriate. Maximum wall panel
displacement was highest for the 2.8D test and was 0.35 in. at 3.0 in. of pile head displacement.
For all the other tests, the maximum wall displacement at 3.0 in. of pile head displacement was
similar and was approximately 0.15 inches. Induced load in the soil reinforcement increases with
depth to the 2nd or 3rd layer of reinforcement after which it decreases. Induced load in the
reinforcement increases as pile spacing decreases. Induced load in the reinforcement decreases
rapidly with increased transverse distance from the pile. Induced load in the reinforcement can
be estimated using a regression equation which considers the influence of pile load, pile spacing
behind the wall, reinforcement depth or vertical stress, and transverse spacing of the
reinforcement.

Keywords: laterally loaded pile, MSE wall, p-y curve, p-multiplier
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1 INTRODUCTION

Piles within the reinforcement zone of Mechanically Stabilized Earth (MSE) walls are
commonly used to support Integral Abutment Bridges (IAB). These piles must support the axial
load from the bridge as well as lateral loads from thermal expansion and contraction and
earthquake loads. There are commonly used methods for designing laterally loaded piles; however,
little guidance on the design of these piles within the zone of reinforcement of a MSE wall is
available. Also, little is known about the effects of laterally loaded piles on the reinforcement used
for the MSE wall, thus it is not known how to account for the induced stresses on the soil
reinforcement caused by the laterally loaded piles. Right-of-way constraints often require
traditional sloped fills to be removed and replaced with MSE walls. Several approaches have been
used for design of laterally loaded piles within the reinforced mass of an MSE wall. One design
approach is to place piles back far enough from the wall face so that no interaction between the
wall and pile is assumed to take place. However, this may require an offset of six to eight pile
diameters which increases the bridge span length. Another method is to assume that the pile near
the wall has no resistance. Although conservative, this approach leads to larger piles or more piles
at a bridge abutment which increases the foundation cost. Reduction factors to account for the
decreased resistance of pile near the wall could be used, but there is insufficient data to define

what they should be at present.
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To investigate this problem further, full-scale lateral load testing of cast-in-place shafts was
first performed by Pierson et al. (2009). The results clearly indicated that as spacing behind the
wall of the laterally loaded shafts decreased, lateral resistance decreased. However, these tests
involved geosynthetic reinforcements and short drilled shafts which are not typical of routine
design practice. Price (2012) and Nelson (2013) also conducted full-scale pile lateral load tests and
further investigated the effects of the MSE wall-pile interaction for long driven piles and metallic
reinforcements. They were able to propose a preliminary reduction factor design curve for lateral
resistance of piles near MSE walls, but their tests all involved relatively high reinforcement length
(L) to wall height (H) ratios near 1.0 which are typical of seismic loadings. Their results suggested
that the reduction factor curves might be a function of reinforcement L/H ratios, but no data were
available for L/H values of about 0.70 which are more typical of static loading conditions. They
also investigated the loads induced on the soil reinforcement caused by the lateral pile loading and
proposed a failure envelope for the soil reinforcement near the laterally loaded piles. This research
will focus on an L/H ratio which is shorter than previously tested to investigate the effects of the
L/H ratio further. Furthermore, circular piles and ribbed steel strip reinforcements are used which

is typical of routine design practice.

1.1 Objectives

The objectives of this research study are to determine appropriate reduction factors for
lateral pile resistance of pipe piles based on spacing behind the back face of the wall for walls with
a shorter L/H ratio than has previously been studied, determine if wall panel displacement remains
within acceptable limits during lateral pile loading for walls with a shorter L/H ratio, and to
determine how to predict loads induced by lateral pile loading on the soil reinforcement in the

vicinity of the piles being loaded.
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1.2 Scope

To further improve our understanding of the MSE wall-pile interaction, a full-scale MSE
wall was constructed and piles within the zone of reinforcement were laterally loaded towards the
wall. Three different pile types spaced at varying distances behind the wall and two reinforcement
types including welded wire grids and ribbed steel strips were tested. Wall face displacement, pile
strain, soil reinforcement strain, and pile load were all monitored during testing. Data from
previous studies and the additional data gathered through this research should allow design curves
to be made to predict lateral load resistance of piles at varying distances behind the MSE wall face.
Additionally, the possibility of developing a method to account for induced stress on soil
reinforcement due to lateral pile loading will be explored using the data gathered. Previous testing
at the site with L/H ratios near 1.0 have confirmed the preliminary design curves for this
reinforcement ratio (Hatch, 2014 & Han, 2014). This thesis focuses on the lateral load tests
conducted on circular pipe piles with ribbed strip reinforcements having L/H ratios near 0.70.
These test represent the first of their kind with reinforcement ratios typical of static conditions and

metallic strip reinforcements.

1.3  Thesis Organization

The remainder of this thesis will have the following organization. First, a review of the
literature will be completed followed by an overview of the test layout of the wall, piles, and
loading device. The instrumentation employed during testing will then be discussed. After that,
the lateral load testing results for both the piles and the soil reinforcement will be given. Finally,

the lateral pile load analysis will be reviewed followed by conclusions drawn from the research.
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2 LITERATURE REVIEW

As the amount of research conducted to determine the effects of laterally loaded piles on
MSE walls and their reinforcement has increased, it has become clear that the strength of laterally
loaded piles decreases as they are placed closer to the face of the MSE wall. However, a finalized
design approach has not been determined. As the research results from each series of tests is
combined, a design approach to account for the decreased resistance of these piles may be possible.
The literature review contained herein reviews MSE wall design, laterally loaded pile design, and
the previous research and testing which has been performed on laterally loaded piles that has

brought us to our current state of knowledge.

2.1 MSE Wall Design

In general, an MSE wall consists of multiple layers of soil reinforcement attached to a wall
facing which prevents raveling of the soil between the reinforcement layers. There are various
types of soil reinforcement that are used, generally classified as metallic or non-metallic with
varying degrees of extensibility. Extensible soil reinforcement may deform as much or more as
the soil at failure. Inextensible reinforcement is much more rigid and deforms very little at failure.
The types of facing used are also variable including precast concrete panels, dry cast modular
blocks, gabions, welded wire mesh, shotcrete, timber lagging and panels, polymeric cellular

confinement systems, and wrapped sheets of geosynthetics (Berg et al, 2009).
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The design of MSE walls has been done based on both Allowable Stress Design (ASD)
and the Load and Resistance Factor Design (LRFD) method. Both methods are based on the
evaluation of the external and internal stability of the stabilized mass; the primary difference
between the two design approaches is the way uncertainty is treated in the design. LRFD design is
based on the equation

AL = ¢R @2-1)
where

7 is the load factor which is greater than 1,

L is the load,

¢ 1s the resistance factor which is less than 1, and

R is the resistance.

Using LRFD, the following strength and service limits must be evaluated in the design of
an MSE wall. External stability strength limit states for MSE walls include limiting eccentricity,
sliding, and bearing resistance failures. Internal stability parameters which must be evaluated
include tensile and pullout resistance of reinforcement as well as structural resistance of face
elements and face element connections. The service state limits which must be evaluated for the
external stability are vertical and lateral wall movements. Global stability must also be considered
including the overall stability and the compound stability.

Figure 2-1 shows a typical cross section of an MSE wall. When evaluating the external
stability of an MSE wall, important engineering parameters such as the unit weight, friction angle,
cohesion, and coefficient of consolidation of the foundation soil need to be determined as well as

the unit weight, friction angle, and cohesion of the retained backfill. Additionally, the unit weight
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and friction angle of the reinforced wall fill are also necessary. Loads considered in the design of

the external stability of the wall include horizontal and vertical earth pressure, live load surcharge,

earth surcharge, as well as water and seismic loads if applicable. The reinforced mass is treated as

a rigid body which acts vertically on the foundation soil and which has earth pressures acting

horizontally behind it caused by the retained backfill. Hence, the external stability is largely based

on the length of reinforcement used. The minimum length of reinforcement is generally 8 ft. or

0.7H, whichever is larger, with H being the design height of the wall plus the surcharge. Forces

resisting sliding, overturning, and bearing failure of the mass are compared to driving forces,

applying the appropriate load and resistance factors for each case. The worst case of the load

combinations is considered based on limiting eccentricity (overturning), sliding, and bearing

resistance failure. Figure 2-2 shows the three cases evaluated for external stability.
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Figure 2-2: Potential external failure mechanisms for an MSE wall (Berg et al, 2009).

Evaluation of the internal stability of an MSE wall requires the consideration of two main
reinforcement failure modes: pullout and elongation or breakage. Pullout failure occurs when the
tensile force in the reinforcement is greater than the pullout resistance and elongation failure occurs
when the tensile force in the reinforcement is large enough to cause excessive elongation or
breakage. Loads in the reinforcement are primarily caused by earth pressure of the reinforced fill
and surcharge but may also include water, seismic, and other loads. Horizontal earth pressures
acting on the wall vary depending on what type of reinforcement is used. Figure 2-4 and Figure
2-5 show the assumed failure surface for inextensible and extensible reinforcement respectively.
Vertical and horizontal spacing of the reinforcement must be considered. The horizontal stress

within the reinforced zone is given by the equation
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o,=K,0,+Ac, (2-2)
where

K is the coefficient of lateral earth pressure in the reinforced zone which is a fraction of

Ka, the coefficient of active earth pressure (As given in Figure 2-3),

o, is the factored vertical pressure at the depth of the reinforcement with 1.35 being the
load factor, and

Aoy, is the factored horizontal stress due to external surcharge with 1.35 being the load

factor because the surcharge is represented as an equivalent uniform soil height.
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*Does not apply to polymer strip reinforcement

Figure 2-3: Variation of the coefficient of lateral stress ratio (K,/K,) with depth in an MSE wall
(Berg et al, 2009).
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After calculating the horizontal earth pressure, the maximum tension in the reinforcement
per unit width of the wall, Tmax can be determined using Equation (2-3):

Tyux =oySy (2-3)
where

Sy is the vertical spacing of the reinforcement which is 2.5 ft., and

on 1s the horizontal earth pressure at the center of the contributory height.

If the reinforcement is not horizontally continuous or if panels of known size are used as
the facing, additional variables can be added to this equation to determine the maximum tension
in the reinforcement. The maximum tension in the reinforcement must be less than the resistance
of the reinforcement to breaking or pullout. The length of reinforcement that must extend beyond

the active zone, L, to resist pullout is determined with Equation (2-4) below.

T
¢Le >_ T MAY (2_4)
F*ao,CR.

where

¢ is the resistance factor for soil reinforcement which is 0.75 for statically loaded metal
strips,

F" is the pullout resistance factor which varies with depth,

o 1s the scale correction factor equal to 1.0 for inextensible strips unless otherwise indicated
by pullout tests,

C =2 for strip, grid, and sheet reinforcement, and

R is the coverage ratio which is the ratio of strip width to horizontal spacing equal to 0.067

for this test.

11
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The total length of the reinforcement is the sum of the active and effective length as shown
in Figure 2-5. The active length of inextensible reinforcement for the bottom half of the wall is
calculated using Equation (2-5), and the active length of inextensible reinforcement for the top half
of the wall is calculated using Equation (2-6).

L,=0.6(H-2) (2-5)

L,=03H (2-6)
where

H is the design height of the wall, and

Z is the depth of the reinforcement.

Connection strength of the reinforcement to the panels is dependent on many factors and
must be determined on a case by case basis through testing and is generally provided by the

manufacturer.

2.2 Laterally Loaded Pile Design

A common approach to analyzing laterally loaded piles is the p-y method. With this
method, the soil surrounding the piles is modeled as a series of springs at various depths along the
pile. The spring stiffness varies nonlinearly with displacement. The displacement of a pile at any
depth at a given lateral load can be determined through an iterative approach using this method.
Figure 2-6 shows a conceptual model of the p-y method. The load depends on soil type and state,
pile geometry, and loading method. Hence, various p-y curves are necessary for different types of

soil.

12
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Figure 2-6: Conceptual model of the p-y method (After Reese et al. 2004).

A computer program called LPILE is available for laterally loaded pile design. LPILE is
the commercial version of the computer program COM624 which was originally developed by
Reese and Matlock at the University of Texas in the 1970s and is one of the most widely used
programs for lateral pile load analysis. LPILE is a finite difference program that uses the p-y
method described previously. The program computes deflection, bending moment, shear force,
and soil response over the length of the pile. Various options are available within the program for
determining p-y curves based on different soil types. Some of the options available to model
different soil types in LPILE include stiff clay with or without free water (Reese), sand (Reese),
American Petroleum Institute (API) sand (O’Neill), liquefied sand (Rollins), and weak rock
(Reese). The accuracy of the analysis depends on how accurately the reaction of the soil is modeled
by the p-y curve selected for the analysis. The API sand (O’Neill) method is used for laterally
loaded pile analysis in this report. The soil unit weight, friction angle, and modulus of subgrade

reaction (soil stiffness) are required inputs for this method.
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The API p-y curve is defined by the equation
p=AP tanh{@ y} (2-7)
© o Lr)

where

A is a factor to account for cyclic or static loading and is equal to 3.0-0.8(Z/D) >0.9 for
static loading and 0.9 for cyclic loading,

Z is the depth below the ground surface,

D is pile diameter,

P, is the ultimate lateral resistance which is the lower value calculated using
Equation (2-8) and (2-9),

k is the initial modulus of subgrade reaction determined from Figure 2-7 based on the soil

friction angle, and

v is the lateral deflection at depth Z.
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s reaction based on soil friction angle or relative density (API, 1982).
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The ultimate lateral resistance for sand, Py, has been found to vary from wedge type failure
at shallow depths determined by Equation (2-8) to a flow-around type failure at greater depths
defined by Equation (2-9). The equation giving the smallest value of Py, should be used as the
ultimate resistance in Equation (2-7). The typical wedge type failure shape is illustrated in Figure
2-8. The angle B is typically assumed to be 45° + ¢/2 while the fan angle, a, is thought to be
between ¢/2 and ¢ for dense sand and approximately ¢/2 for loose sand.

P . =(Cx+C,b)y'x (2-8)

P, =Cby'x (2-9)
where

y’ is the effective soil unit weight,

x is the depth below the ground surface, and

C1, (2, and Cs are coefficients determined from Figure 2-9.

Figure 2-8: Illustration of wedge failure for laterally loaded piles at shallow depths
(Reese et al. 2004).
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Figure 2-9: Coefficients C;, C;, and C; as a function of soil friction angle.

Previous testing and research has shown that laterally loaded piles within the reinforcement
zone of an MSE wall have reduced resistance. A common approach is to use a p-multiplier (usually
less than 1) to reduce the p-y curve to account for the reduced resistance of the pile near the wall.
Prior to this research, very few tests have been done to determine the correct multiplier to use for

a given situation. Figure 2-10 illustrates how the p-multiplier is used to reduce the p-y curve.
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Figure 2-10: Soil modulus reduction using the p-multiplier approach.

2.3 Previous Testing and Research

It has been recognized for quite some time that research needs to be conducted to
investigate the effects of laterally loaded piles within the reinforcement zone of MSE walls. To
date, three full scale tests have been conducted. The first study conducted by the University of
Kansas with funding from the Kansas Department of Transportation investigated the lateral
resistance of short drilled shafts behind a block masonry wall reinforced with geogrid sheets
(Pierson et al. 2009). The wall and shafts were specifically constructed for the testing purposes.
The second study conducted by BYU with funding from the Utah Department of Transportation
investigated lateral resistance of driven pipe piles at three bridge sites that were under construction
(Rollins et al. 2013). Test involved welded wire (Price, 2012) and ribbed strip reinforcements
(Nelson, 2013). The third test series, of which this study is a part, investigates the lateral resistance
of driven pipe, square, and H-piles with both welded wire and ribbed strip reinforcements at a site
specifically dedicated to testing. This BYU investigation, supported by an FHWA pooled fund,

17
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has already produced reports regarding pipe piles with ribbed strip reinforcement (Han, 2014) and
welded wire reinforcement (Hatch, 2014). These earlier reports deal with reinforcement length to
wall height ratios of about 0.90, which are typical of seismic design, whereas the current study

involves a reinforcement ratio of about 0.70 which is more typical of static design.

2.3.1 Tests with Drilled Shafts and Geogrid Reinforcement (Pierson et al. 2009)

When laterally loaded drilled shafts are used within the reinforcement limits of an MSE
wall, common practice is to anchor the end of the drilled shaft into the underlying foundation
material. While this method works, it was recognized that considerable cost savings may be
realized if it were possible to support the shaft with the MSE mass alone. To determine the
resistance of drilled shafts supported by the MSE mass alone, a 20 ft. high segmental block MSE
wall was designed and constructed according to the Federal Highway Administration (FHWA)
design procedure for MSE walls without shafts. Tensar International Inc. provided the design of
the wall as well as the materials, including Mesa standard unit concrete blocks and UX1400 and
UX1500 extensible geogrid reinforcement. The stiffness and tensile strength of the two types of
extensible geogrid soil reinforcement varied. Both geogrid types consisted of punched-drawn
uniaxial high density polyethylene (HDPE). The geogrids were spaced 2 ft. vertically and the ratio
of geogrid reinforcement length to wall height was 0.7. Corrugated metal pipe (CMP), 36 inches
in diameter, was used as a form for eight drilled shafts located within the MSE mass so drilling
would not be necessary after the wall was constructed. Before construction began, the site was
excavated down to limestone. The geogrid reinforcement was cut to fit around the CMP as the wall
was constructed. Select backfill was used and compacted behind the wall. The backfill consisted
of crushed limestone gravel, specified as Kansas Department of Transportation (KDOT) clean

aggregate backfill (CA-5) with a measured friction angle of 51 degrees. It was compacted using a
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steel wheel/pneumatic tire roller behind the shafts and a walk behind tamper between the shafts
and the wall. The dry density of the backfill was 110 pcf. Steel reinforcement cages were placed
in the vertical CMP and high slump concrete was poured to create the shafts.

This research explored the effects of shaft length, shaft spacing behind the wall, geogrid
stiffness, and group interaction. All of the shafts lengths were equal to the height of the wall (20
ft.) except for one that was 75% of the wall height. The four shafts that were equal to the wall
height were spaced at 1, 2, 3, and 4 diameters behind the wall. Three additional shafts were spaced
at 2 diameters and were used to explore the group interaction of shafts near the wall. The shorter
shaft was also spaced at 2 diameters. The shafts were monitored using Linear Variable Differential
Transformers (LVDTs), a hydraulic pressure gauge, a load cell, and an inclinometer. Earth
pressure cells and strain gages were used to monitor the MSE wall along with photogrammetry
and telltales to determine wall deflection. The data collected from these shafts was used to provide
a comparison of the performance of the wall, reinforcement, and shafts based on the different shaft
lengths. The area of influence on the wall of the loading, the displacement of the wall versus the
displacement of the drilled shaft, and the load versus displacement of the shafts were all compared.
It was found that as the spacing between the wall and the shaft decreased, the lateral load resistance
substantially decreased and that the shorter shaft had substantially less lateral load capacity than
the shaft that extended the full depth of the wall. However, the shorter drilled shaft was still able
to carry substantial loads. The load-displacement curves for the shafts spaced at 1, 2, 3, and 4
diameters and the short shaft is shown below in Figure 2-11. The spacing of the shafts is given in

Table 2-1.

19

www.manaraa.com



200

180 4 - [—>e—Shah A . 4D
160 4 -|—®—ShafiB | - : _
— & — Shaft C :
140 ? : : ; -
—A—Shaft D ;
g 120 4| — 3 - Shaft BS _g-—--2]3D
S 1004 . | S
m _ ¢ |
S 80 ; B " | 2D ; -
50 4 o ' f
- e ke 1D ;
G *x | |
20 - M
0 } ; . i
0 2 4 8 a 10

Displacement (in.)

Figure 2-11: Peak load versus displacement curves for tested shafts (After Pierson et al. 2009).

Table 2-1: Shaft spacing and length

Distance from Shaft
Facing to Center | Normalized | Length
Shaft of Shaft [in] Spacing [ft]
A 36 1D 20
B 72 2D 20
C 108 3D 20
D 144 4D 20
BS 72 2D 15

To gain a better understanding of the MSE system, data from this study was used to

calibrate a finite difference model of the MSE wall and shafts (Huang et al. 2011). The blocks

were modeled individually to be as accurate as possible. The stiffness of the geogrid was

considered in the strong (perpendicular to the wall), weak (parallel to the wall), and shearing

direction. The stiffness of the geogrid was calculated based on its elastic modulus and Poison’s

ratio and applied to the model. The stiffness was then varied to gain a better understanding of its
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influence on the lateral shaft load and wall face displacement. The results indicate that the stiffness
of the geogrid has the largest effects on the shaft and wall face displacement for a given pile load.
Stiffer geogrids reduce the wall face displacement for a given pile load.

This test clearly demonstrates that strength decreases as spacing between the pile and wall
decreases. However, the results of the study have limited application. Large drilled shafts were
used so additional information on the interaction of smaller driven piles and MSE walls is not
explored. Also, the wall was constructed of extensible geogrid reinforcement and blocks so
additional testing is necessary to make conclusions about the pile-wall interaction of walls with
inextensible reinforcement and other wall types. The friction angle of the backfill was found to be
51 degrees which is only typical of gravels and too high for many other backfill types.
Additionally, p-multipliers were not back calculated in order to make the design applicable to other

situations.

2.3.2 Tests with Driven Pipe Piles and Metallic Reinforcements (Rollins et al. 2013)

To investigate the relationship between the lateral resistance of driven steel pile piles near
MSE walls reinforced with metallic reinforcement, multiple tests were performed on piles where
MSE walls were being constructed during expansion of Interstate-15 in central Utah. Two common
types of soil reinforcement were tested including welded wire grid reinforcement and ribbed steel
strip reinforcement. Routine design practice typically calls for driven steel piles and metallic

reinforcement.

2.3.2.1 Welded Wire Reinforcement
Price (2012) reports on full scale lateral load tests performed on five test piles that were
spaced at varying distances behind MSE walls at two bridge sites. Welded wire grids were used as

21

www.manaraa.com



the MSE wall reinforcement in both cases. Three of the piles were production piles designed to
support a bridge and two of the piles were test piles located on the wing walls of the MSE wall
next to a bridge abutment. All of the piles tested were closed ended steel pipe piles with 0.375 in.
wall thickness. Two of the piles tested were 12.75 in. diameter and three piles were 16 in. diameter.
The test piles were typically driven approximately 50 and 60 ft. below the base of the wall
respectively into a dense sand bearing layer. All the piles were hollow at the time of testing but
later filled with concrete. Prior to placing backfill and constructing the wall, the 16 in. test piles
were wrapped with two layers of 10 mil low-density polyethylene (LDPE). This is a common
practice to reduce down drag on the pile as the soil is compacted around the piles. The
reinforcement was spaced vertically every 2.5 ft. and the typical horizontal spacing was 6 ft. for
the production piles and 5 ft. for the test piles. The walls were constructed of 6 in. thick panels that
were typically 6 ft. high by 12 ft. wide for the site where the production piles were located and 5
ft. high by 10 ft. wide at the site with the test piles. Sandy gravel fill American Association of State
Highway and Transportation Officials (AASHTO) A-1-a classification was compacted behind the
wall to approximately 97% of standard proctor density with 5% moisture content. A load cell and
hydraulic pressure gauge were used to monitor the load on the piles as they were tested. The
bending moment of the piles and the load in the soil reinforcement were monitored by strain
gauges. One to three layers of soil reinforcement were instrumented depending on the test. String
potentiometers were used to monitor the displacement and rotation of the pile as well as the
displacement of the ground in front of the pile. Shape arrays and LVDTs were used to monitor the
wall displacement. The piles were loaded based on displacement control criteria. The load-

displacement curves for the three test piles are shown in Figure 2-12.
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After testing, the finite difference computer program LPILE was used to perform back
analyses to predict the lateral resistance of the piles which were assumed to be placed far enough
back that there was no interaction with the wall. The friction angle of the soil and p-y modulus
values (k) were varied until the computed and measured load displacement curves matched well.
Using the piles which showed no wall interaction as a baseline, a p-multiplier was applied to reduce
the soil resistance until the model predicted correct load-displacement curves for piles located
closer to the wall. The results are shown in Figure 2-13. From these tests, it appears that the pile
resistance may be dependent on the L/H ratio as well as on the spacing of the pile behind the wall

although the data is limited.

60 T
50 +
Bap o N e
_::40 L | | o |_.! __,_a-'F .
- — s
-] 14 .,r""f'
ory 30 ———x —
.._5 - J/__-J-"'
=20 Bt B
o - " | --d - Final TP4 (5.2 pie diameters from wall)
10 , D".,r"’I/ e —8&—Final, TP3 (2.9 pile diameters from wall)
I :I" & — B —Funal. TP5 (1.6 pile diameters from wall)
|] -.’;.l i I L 1 i i I 1 i v I ! i i i i ! i i i i ! I L 1 ¥ !
0o 03 1.0 15 20 25 30

Pile head deflecnon (m.)

Figure 2-12: Load-deflection curves for the test piles (Price, 2012).
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Figure 2-13: P-multipliers for piles based on pile distance from the wall and L/H ratio (Price, 2012).

Additionally, the data gathered from the soil reinforcement was used to create a proposed

failure envelope for the soil reinforcement. The envelope is based on the distance from the center

of the pile normalized by the spacing of the pile behind the wall and the maximum force induced

in the reinforcement normalized by the load on the pile. The results are shown in Figure 2-14.

The results of these tests build upon the work done by Pierson and additionally explore

inextensible steel grid reinforcement, driven steel piles, and a move towards design parameters.

However, the tests also indicate that additional research is needed. The 16 in. test piles have a

lower observed resistance than the 12.75 in. piles. This may be due to the LDPE wrapping but

could be based on other factors. Too few piles were tested to provide a broad correlation between

pile spacing and resistance to adequately develop a p-multiplier curve which can be used for

design. Also, ribbed steel strip reinforcement was not investigated.
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Figure 2-14: Tentative failure envelope for soil reinforcement (Price, 2012).

2.3.2.2 Ribbed Strip Reinforcement

25

Nelson (2013) reports on four lateral pile load tests that were performed similar to those
performed by Price (2012) but with ribbed strip reinforcement. Two of the piles were production
piles designed to support a bridge and two of the piles were test piles located behind a two stage
MSE wall being constructed for a bridge abutment. All of the piles tested were closed ended steel
pipe piles with 0.375 in. wall thickness. The production piles were driven approximately 120 ft.
below the base of the wall into a sand bearing layer while the test piles extended approximately 20
ft. below the base of the wall. The spacing of the piles behind the wall varied from 1.3 to 7.7 pile
diameters. All the piles were hollow at the time of testing. Galvanized ribbed steel strips were used
as the MSE wall reinforcement. The reinforcement was spaced vertically every 2 ft. The length of
reinforcement varied throughout the wall but was approximately 28 ft. near the test piles. The wall

panels were non rigid welded wire panels covered with geo fabric and were approximately 5 ft.

www.manaraa.com



high by 10 ft. wide. The wall height at the time of testing was approximately 22 ft. and the L/H
ratio varied from approximately 1.0 to 1.2. Sandy gravel fill with AASHTO A-1-a classification
and a standard Proctor maximum density of 132.2 pcf and optimum moisture content of 7% was
compacted behind the wall to approximately 97% of standard Proctor density with 5% moisture
content. A free draining backfill with reduced compaction requirements was used adjacent to the
wall.

A load cell and hydraulic pressure gauge were used to monitor the load on the piles as they
were tested. The bending moment of the piles and the load in the soil reinforcement were
monitored by strain gauges. Two layers of soil reinforcement were instrumented. String
potentiometers were used to monitor the displacement and rotation of the pile as well as the
displacement of the ground in front of the pile. LVDTs were used to monitor the wall displacement.
The piles were loaded based on displacement control criteria to various total displacements. The

load-displacement curves for the piles are shown in Figure 2-15.
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Figure 2-15: Load-displacement curves for piles tested (Nelson, 2013).
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After testing, the finite difference computer program LPILE was used to perform back
analyses to predict the lateral resistance of the piles which were assumed to be placed far enough
back that there was no interaction with the wall. The friction angle of the soil and p-y modulus
values (k) were varied until the computed and measured load displacement curves matched well.
Using the piles which showed no wall interaction as a baseline, a p-multiplier was applied to reduce
the soil resistance until the model predicted correct load-displacement curve for piles located closer
to the wall. Additionally, the data gathered from the soil reinforcement was used to create a
proposed failure envelope for ribbed steel strip soil reinforcement. As with the envelope proposed
by Price, the envelope is based on the distance from the center of the pile normalized by the spacing
of the pile behind the wall and the maximum force induced in the reinforcement normalized by the

load on the pile.

2.3.3 Lateral Load Tests on Pipe Piles Near MSE Wall with Metallic Reinforcement
(Hatch 2014, Han 2014)

As part of the current investigation, Hatch (2014) and Han (2014) report on full scale lateral
load testing performed on pipe piles to further investigate the effects of pile spacing behind the
wall. A full scale single stage MSE wall was constructed for the testing. Testing and analysis
occurred in two different phases corresponding to different total wall elevations. Both phases of
construction and testing have been completed, however the analysis of Phase 2 data is currently
underway at the time of this report, and this thesis is part of the second phase of the analysis.

For the first phase of construction and testing, the MSE wall was constructed to an elevation
of 15 ft. with a 2 ft. embedment depth. The wall consisted of two wall types separated by a slip
joint. The west side of the wall with ribbed steel strip reinforcement was designed by Reinforced

Earth Company (RECO) and the east side of the wall with welded wire grid soil reinforcement
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was designed by SSL according to AASHTO 2012 LRFD. Both types of reinforcement were 18
ft. in length. Concrete panels approximately 5x10 ft. were used as the wall facing for both
reinforcement types and were provided by the respective companies along with the soil
reinforcement. The total wall length was approximately 180 ft., the main full height section being
approximately 100 ft. with two 40 ft. wing walls at a 2:1 slope to bring the wall down to the
elevation of the native material.

12.75%0.375 (A252-Grade 3) pipe piles, 12x12x313 square piles, and HP12x74 piles were
driven prior to wall construction at design spacings of 2, 3, 4, and 5 diameters behind the future
location of the back face of the MSE wall. Actual spacing after driving and construction varied
somewhat from these target values. All piles were instrumented with strain gauges in order to
determine bending moment in the pile. Two of the soil reinforcements on the top two layers were
instrumented with strain gauges to further investigate the relationship between the loads induced
on the reinforcement from the lateral pile load. Several reaction piles were driven behind the
reinforced mass and spanned with a 3 ft. deep reaction beam in order to create a reaction for the
load applied to the test piles. The soil backfill was AASHTO A-1-a classification with a standard
proctor maximum density of 128 pcf and an optimum moisture content of 7.8%. The fill was
compacted to approximately 95% of the standard proctor density. A 600 psf surcharge was applied
above the zone of reinforcement adjacent to each test pile using concrete blocks to simulate a
bridge abutment pile cap.

The piles were loaded based on displacement control criteria in 0.25 in. increments out to
a total displacement of 3 in., measured at the load point. Pile load and displacement, pile strain,
wall displacement, horizontal and vertical ground movement between the pile and the wall, and

strain on the soil reinforcement were all monitored during testing using string potentiometers,
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shape arrays, strain gauges, and digital imaging correlation. The results of the testing confirm that
there is a relationship between the spacing of the pile behind the MSE wall and the lateral
resistance of the pile. Figure 2-16 shows the load-displacement curves for the pipe piles on the
side of the wall with grid reinforcement. Figure 2-17 shows the load-displacement curve for the

pipe piles and the ribbed strip soil reinforcement.
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Figure 2-16: Pile head load versus deflection for peak load of grid reinforcement (Hatch, 2014).
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Figure 2-17: Pile head load versus deflection for peak load of ribbed steel strip reinforcement
(Han, 2014).
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Based on these results, an LPILE model of the piles was created. Using the pile with the
maximum spacing behind the wall as a baseline, p-multipliers were determined to apply to the
piles spaced closer to the wall. The results are shown in Figure 2-19. These results show the same
trend established by previous testing and research performed by Price and Nelson. However, the
preliminary design curve proposed by Price and Nelson had two different curves for different L/H
ratios ranging from 1.1 to 1.6 as shown in Figure 2-13. The height of the surcharge was not applied
to the height of the wall as it was in subsequent L/H ratio calculations so the L/H ratio of 1.6
calculated without the surcharge is closer to 1.2 when an equivalent soil surcharge is used.
Therefore, a single curve with L/H ratios ranging from approximately 0.9 to 1.2 as shown in Figure
2-19 was used rather than separate curves for different L/H ratios. A new linear regression using
the data from Rollins et al. (2013) without creating separate curves for different L/H ratios was
calculated. Equation (2-10) gives the new linear regression equation. Additionally, the linear
regression equation that includes data from Hatch, 2014 and Han, 2014 as well as data from Rollin
et al. (2013) was calculated. Recalculation of the equation shows that no change to the equation
occurs when data from Hatch and Han is included. Figure 2-19 shows the linear regression

equation based on all previously calculated p-multipliers.

P = 0.34% ~0.29 (2-10)

where
pmuie 1s the p-multiplier,
S is the distance from the center of the pile to the back face of the MSE wall, and

D is the pile diameter.
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As was done by Price and Nelson, loads on the soil reinforcement induced by the lateral

loading of the pile were also investigated using the data collected from the strain gauges on the

soil reinforcement. Data from this study was added to the data gathered by Price and Nelson for

the respective soil reinforcement types. A plot of the results for the grid reinforcement is shown

below in Figure 2-18. As can be seen, the envelope does not fit the data well perhaps due to the

applied surcharge. Similar results were found by Han (2014). It is clear that the envelope needs

revision or that another approach needs to be explored to predict accurately the induced loads on

the soil reinforcement.
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Figure 2-18: Normalized induced force in grid versus normalized distance from pile (Hatch, 2014).
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Figure 2-19: P-multipliers from previous testing and research (Rollins et al. 2013, Hatch 2014,
Han 2014).

In each of these full scale tests on metallic reinforcement, only the top two layers of soil
reinforcement have been instrumented with strain gauges so current data does not make it possible
to determine loads induced on lower layers of reinforcement or the depth where maximum induced
load on the soil reinforcement is expected to occur. Furthermore, the data gathered by Hatch, 2014
and Han, 2014 is outside of the design envelope proposed by Price and Nelson so a different
approach of predicting maximum loads induced in the soil reinforcement is necessary. There seems
to be additional factors that affect the induced load on the soil reinforcement other than the load
on the pile and the transverse distance from the pile to the reinforcement which are the two
parameters the current soil reinforcement design curve is based on. Additionally, the effect of an
L/H ratio less than 0.9 on the lateral resistance of the pile has never been tested for driven piles
with metallic reinforcement so the validity of the proposed p-multiplier curve needs to be checked

for shorter L/H ratios.
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3 TEST LAYOUT

Full scale lateral load testing was performed on piles within the reinforcement zone of an
MSE wall built for this research. The wall is located near Lehi, Utah on Geneva Rock property

that was formerly a gravel pit. A map showing the location of the site is shown in Figure 3-1.
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3.1 MSE Wall

The MSE wall consisted of two different soil reinforcement types: ribbed steel strips and
welded wire grids. The welded wire grids were supplied by SSL LLC and the ribbed metal strip
reinforcements were provided by Reinforced Earth Company (RECO). The wall panels were also
provided by these respective companies. To minimize interaction between the two reinforcement
systems and to accommodate small differences in wall panel dimensions between the two
companies, a slip joint was installed between the two wall types.

The two sides of the wall were designed by SSL and RECO respectively using AASHTO
2012 LRFD code provisions. An overview of the site is provided in Figure 3-2. Piles were driven
open ended prior to wall construction and the wall was built up around the piles. Testing occurred
in two different phases. For the first phase, the wall was built to the 15 ft. elevation and all piles
were tested. During the second phase, the elevation of the wall was built to 20 ft. and all of the
testing was repeated. The two phases allowed different L/H ratios to be investigated. During testing
a surcharge load of 600 psf or about 5 ft. of soil was applied behind the piles. Accounting for the
surcharge effect, the L/H ratio at the 15 ft. level was about 0.9 which is more typical in seismic
design while at the 20 ft. level L/H is 0.72 which is more typical of static design.

The reinforcement length of both the ribbed strips and the wire grids was 18 ft. throughout
the entire height of the wall. For each of the pipe piles tested at the 20 ft. level, the top four layers
of reinforcement were instrumented. Two reinforcements on each layer at various transverse
distances from the wall were instrumented with strain gauges as explained in the Instrumentation

section. Hence, a total of eight reinforcements were instrumented and monitored for each test.
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3.1.1 Backfill

A proctor analysis of the soil used as backfill for the MSE wall was obtained at the
beginning of both phases of construction. The soil gradation differed slightly between the phases.
The backfill used for Phase 1 of construction (0 to 15 ft. wall elevation) classifies as AASHTO
A-1-a material and silty sand with gravel (SM) using the Unified Soil Classification System
(USCS). This backfill had a maximum standard proctor density of 128.0 pcf and an optimum
moisture content of 7.8%. The backfill used for Phase 2 (15 to 20 ft. wall elevation) also classifies
as AASHTO A-1-a material but the USCS classification is poorly graded sand with silt and gravel
(SP-SM). The standard proctor maximum dry density is 126.7 pcf. The backfill was provided by
Geneva Rock in both cases. The assumed backfill friction angle and moist unit weight of the soil
used for design of the wall were 34 degrees and 131 pcf respectively. A plot showing the typical

grain size distribution of the backfill for both phases is shown below in Figure 3-3.
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Figure 3-3: Soil gradation of the backfill for both phases of construction and testing.
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The soil between the reaction piles and the test piles was compacted using a vibratory roller
compactor in two lifts between each layer of reinforcement. Between the test piles and the wall, a
vibratory plate compactor was used and the soil was compacted in four six inch lifts between each
layer of reinforcement to account for the reduced compaction energy of the plate compactor. The
target density of the backfill was 95% of the standard proctor dry density and was measured by
BYU students using a nuclear density gauge as the wall was constructed by Hadco, Inc. Measured
relative densities and moisture contents are shown in Figure 3-4 and Figure 3-5. Additionally,
based on the measurements made from the nuclear density tests, the average, standard deviation,
and coefficient of variation of the measured soil properties are shown for the soil between the test
piles and the MSE wall, the soil behind the test piles, and the combined measurements in Table
3-1, Table 3-2, and Table 3-3, respectively. Although the backfill compacted by the roller
compactor behind the test piles was typically 95% or above, the backfill between the test piles and
wall where the vibratory plate compactor was used was generally less than 95%. In addition, there
was more scatter in the relative compaction results for the soil between the test piles and the wall.
Compaction is not normally specified in this area and similar conditions are likely to be
encountered in a typical MSE wall construction project. This experience is confirmed by
representatives from the MSE wall suppliers (J. Sankey, personal communication, 2015).

Based on the average unit weight of the backfill for the wall, the soil was compacted to
approximately 90% of the Modified Proctor dry density. Correlations between relative compaction
and relative density indicated that this equates to a backfill relative density of approximately 50%.

(Lee & Singh, 1971).
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Figure 3-5: Measured moisture content of backfill.
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Table 3-1: Soil properties for soil between test piles and MSE wall

Moisture Dry Unit Moist Unit Relative
Content [%] Weight [pcf] Weight [pcf] Compaction [%]
Average 5.2 116.7 122.8 91.8
Standard Deviation 1.58 3.22 3.76 2.78
Coefficient of Variation 0.303 0.028 0.031 0.030
Table 3-2: Soil properties for soil behind test piles
Moisture Dry Unit Moist Unit Relative
Content [%)] Weight [pcf] Weight [pef] Compaction [%]
Average 6.0 122.8 130.1 96.4
Standard Deviation 1.66 2.64 3.14 2.32
Coefficient of Variation 0.276 0.021 0.024 0.024
Table 3-3: Combined soil properties
Moisture Dry Unit Moist Unit Relative
Content [%] Weight [pcf] Weight [pcf] Compaction [%]
Average 5.6 120.0 126.8 94.3
Standard Deviation 1.66 4.20 5.03 3.39
Coefficient of Variation 0.294 0.035 0.040 0.036

3.1.2 Surcharge

Using pre-cast concrete blocks, a 600 psf surcharge (= 5 ft. of soil fill) was applied to the
zone over the reinforcement within 6 ft. of the pile being tested and extending the length of the
soil reinforcement to simulate a bridge abutment pile cap. An example of the applied surcharge is

shown in Figure 3-6. The surcharge blocks were moved using a fork lift between each test.
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3.2 Piles

The four piles tested were 12.75x0.375 hollow steel pipe piles 40 ft. in length. The piles
were donated by Atlas Tube. All piles conform to American Society for Testing and Materials
(ASTM) A252-10 GR 3 specification and have a yield strength of approximately 57,000 psi. The
piles were driven open ended to a depth of approximately 18 ft. prior to construction of the wall at
various distances behind the future location of the back face of the MSE wall. The piles plugged
with soil while driving with the plug depth ranging from 25.9 to 27.6 ft. below the elevation of the
top of the MSE wall after Phase 2 of construction which corresponds to a distance of 10.4 to 12.1 ft.
above the toe of the pile. Therefore, the piles can be considered as hollow at the time of testing.
Pile driving was performed by Desert Deep Foundations using an ICE I-30V2 diesel hammer.
Driving resistance was minimal and a record of blowcounts per ft. is found in Table F-1 in the
appendix. Spacing of the piles behind the wall was normalized by the pile diameter. Design spacing
was 2, 3, 4, and 5 pile diameters (D), with the distance being measured from the center of the pile
to the back face of the MSE wall. Actual spacing of the piles after the wall was built to the 20 ft.
level was 1.7, 2.8, 2.9, and 3.9D equivalent to a distance of 1.82,2.95, 3.11, and 4.16 ft. Additional
piles were driven behind the reinforced mass and were used to react against while load testing.

Figure 3-6 shows the reaction beam and reaction piles.
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Figure 3-6: An example of surcharge and reaction beam.

3.3 Loading Apparatus

Multiple piles were driven behind the reinforced soil zone and spanned with a W36x150
beam to create the reaction for the lateral load of the piles being tested. The load was applied using
a 300 kip hydraulic jack. A hemispherical self-correcting load plate was used between the
hydraulic jack and reaction beam to minimize eccentric loading. Steel struts were used as spacers
between the jack and the reaction beam as spacing distance changed. A load cell was placed
between the hydraulic jack and the pile. A steel C-channel was welded to each of the test piles to
provide a flat surface for attachment of the clevis pin on the end of the load cell connection and to
protect the strain gauges on the piles. Figure 3-7 shows a typical loading apparatus setup. The

surcharge blocks were placed on either side of the jack as explained in section 3.1.2.
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Figure 3-7: Loading apparatus setup.
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4 INSTRUMENTATION

Various types of instrumentation were employed to gather data for load, displacement,
bending moment, and rotation of each pile being tested. Also, the load induced on the soil
reinforcement, the heave and horizontal movement of the soil in front of the pile being tested, and
the displacement of the wall during lateral load testing of the piles were monitored. Details of the

various instrumentation used can be found in the subsequent sections.

4.1 Load Cell and Pressure Transducers

A pressure transducer connected to the line between the hydraulic ram and the pump was
the primary method used to monitor the pile load. Additionally, a load cell placed between the
hydraulic ram and pile was used as a redundant measurement. Laboratory verification showed that
the load from the pressure transducer was the most accurate, so only data from the pressure
transducer was used for the analysis. Inaccuracies of the load cell measurements are likely due to
eccentrically applied loads. The same pressure transducer and load cell were used throughout
testing of all the piles. The data acquisition rate was two reading per second for both the pressure

transducer and the load cell.
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4.2 String Potentiometers

String potentiometers were used to monitor the horizontal pile deflection during loading at
and 3 ft. above the load point. They were also used to monitor horizontal ground movement
between the pile and the back face of the MSE wall and horizontal movement of the top of the
MSE wall. All string potentiometers were attached to an independent reference frame so
movement of the pile, soil, and wall were measured relative to the same datum. The reference
frame consisted a of 4x4 in. lumber beam resting on two 2x2x6 ft. concrete surcharge blocks placed
approximately 8 ft. away on either side of the pile being tested. The number of string
potentiometers used for each test ranged from 4 to 6.

The string potentiometers were attached to the reference frame and positioned as needed
using 2x4 in. lumber, clamps, and screws. Eyebolts magnetically attached to the pile were used for
the connection of the string potentiometer lines to the pile. An eyebolt was drilled and epoxied
into the top of the MSE wall and metal stakes were driven into the ground between the pile and
the back face of the MSE wall at approximately 1ft. intervals as spacing allowed and attached to
the string potentiometer lines. The data acquisition rate was two readings per second for all string
potentiometers. String potentiometer displacements were verified using a measuring tape before
each test began and were graphically monitored during testing.

The attachment of the potentiometer lines to the stakes between the pile and the back of
the MSE wall was made as close to the ground as possible; however, rotation of some of the stakes
between the pile and wall was observed during testing leading to some uncertainty in the accuracy
of these measurements. The location of string potentiometers used for each test is shown below in

Table 4-1.
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Table 4-1: String potentiometer locations

Load 3ft Above Top of
Test Point | Load Point Wall 1ft 2ft 3ft Other

1.7D SP37 SP36 SP33 SP32-10in
2.8D SP37 SP36 SP33 SP31 SP32-20in
29D SP37 SP36 SP33 SP31 | SP32

3.9D SP36 SP37 SP34 SP32 | SP33 | SP31-13in

4.3 Strain Gauges

Waterproof electrical resistance strain gauges were used to measure strain on the soil
reinforcement induced from the pile loading and also strain induced in the pile from bending. The
measured strains were later used to determine the force induced on the reinforcement and the pile

bending moment.

4.3.1 Soil Reinforcement Strain Gauges

Two reinforcement strips in each of the top four layers of soil reinforcement were
instrumented. Gauges were attached 0.5, 2, 3, 5, 8, 11, and 14 ft. from the wall connection point
of the reinforcement except in the case when a gauge would land on a rib of the reinforcement. In
this case, the gauge was placed as close as possible to the specified location. None of the gauges
were placed more than 1 in. from the above specified distances. Gauges were attached to both the
top and bottom of the reinforcement for redundancy and to cancel out bending moment effects.
Strain gauge lead wires were bundled and wrapped with electrical tape for additional protection
during transport and construction. The lead wires were run along the sides of the reinforcement
into a Poly Vinyl Chloride (PVC) conduit placed against the back face of the wall up to the top the
MSE wall. The data acquisition rate was two reading per second for all soil reinforcement strain

gauges. The instrumented soil reinforcement strips are shown below in Figure 4-1.
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Several of the strain gauge wire leads were damaged or cut during transport and
installation. Repair of the damaged wires was attempted when possible; however, some of the
strain gauges which were repaired did not function properly. Also, due to the testing sequence and

location of the strips, some of them were subject to loading and unloading up to four times which

seemed to cause additional failures of some of the strain gauges.
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Table 4-2: Reinforcement number and horizontal distance from pile center to
reinforcement center for all instrumented soil reinforcements

Layer Depth

Test 15in 45 in 75 in 105 in

1.7D | 21 -9.5in | 22-35.0in | 20-11.0in | 19-37.5in | 1 -9.0in | 2-36.0in | 10-9.0in | 9 - 35.0in
2.8D | 22-24.5in | 21-50.0in | 19-20.5in | 20-47.0in | 2-22.5in | 1-49.5in | 9 - 23.5in | 10-50.0in
29D | 23-10.0in | 24-35.5in | 18-12.0in | 17-38.0in | 5-11.5in | 6-37.0in | 13-10.5in | 12-38.0in
39D | 24-26.0in | 23-51.0in | 17-22.5in | 18-49.0in | 6-24.5in | 5-50.0in | 12-24.5in | 13-51.5in

4.3.2 Pile Strain Gauges

Gauges were attached to each pile at a distance corresponding to 2, 4, 6, 9, 12, 15, and 18
ft. below the ground surface after compaction to the 20 ft. elevation. Gauges were attached on
opposite sides of the pile for redundancy. For additional protection against damage during driving
and construction, L1 1/2x1 1/2x1/8 in. angle iron was placed over the gauges and lead wires and
tack welded to the pile. Care was taken to ensure that none of the welds were closer than 1 ft. to
any of the gauges to avoid damage. After the angle iron was attached, it was filled with expansive
foam for additional protection against water. The data acquisition rate was two reading per second
for all pile strain gauges.

As with the soil reinforcement, several of the strain gauge wire leads were damaged or cut
during driving and construction. Repair of the damaged wires was attempted when possible;
however, some of the strain gauges which were repaired did not function properly. If multiple lead
wires on the same pile were cut and it was not possible to determine the proper location through
inspection of the wires, the resistance of the wires and the strain measured during testing was used
to estimate the proper location. During driving, some of the piles rotated slightly so the strain
gauges were not aligned with the bending axis of the pile. In this case, the rotation of the pile was

measured and used to correct the strain measured by the strain gauges.
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4.4 Shape Arrays

Measurand ShapeAccelArrays (Shape Arrays) were used to measure the change in

deflection of the wall induced by lateral pile loading. Shape arrays consist of an array of rigid

segments separated by joints with MEMS gravity sensors which measure tilt along three axes.

Much like an inclinometer, the sensors allow the displacement at any point along the array to be

calculated relative to the end of the array. Four shape arrays were placed in electrical conduit

running vertically up the back face of the MSE wall for each test. The conduit was secured against

the back face of the MSE wall with duct tape during construction. One shape array was installed

approximately in front of each pile being loaded and the others were installed at various distances

to one side of the pile. Table 4-3 shows the distances from the pile center to each of the arrays for

all of the tests.

Table 4-3: Transverse distance of shape array to center of pile

Array Number
Test | 45104 | 45134 | 45115 | 45112
1.7D 0 38 96 69
2.8D 0 38 96 69
2.9D 57.5 95.5 0 33
3.9D 0 33 59.5 92.5

4.5 Digital Image Correlation (DIC)

Digital Imaging Correlation (DIC) is an optical measurement method that uses two cameras

at a specified distance apart to take images of an object simultaneously during testing. A computer

algorithm can then track the location of hundreds to thousands of points on the object to calculate

contours of displacement, deformation, and strain in three coordinate axes of the total value. DIC
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was used to monitor the deflection of the MSE wall face. A typical setup of the cameras can be
seen in Figure 4-2. Images were captured immediately after each loading of the pile and again after
a five-minute relaxation period. A high contrast grid was applied to the wall aiding in the location
of identical points on each image. During analysis of the images, the images were divided into
small local facets as shown in Figure 4-3. The position of the cameras in relationship to one another
is calculated when the system is calibrated and pixels within each facet are tracked. This
information allows a correlation algorithm to be used to calculate the three dimensional position
of each point from which contours of displacement, deformation, and strain of the wall can be

determined.

Figure 4-2: Typical DIC setup.
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S LATERAL LOAD TESTING

Lateral load testing of the four piles began on August 4, 2014 and was complete by August
6, 2014. For an additional reference, a reaction pile located outside of the reinforced mass but
still in the compacted backfill was tested on August 20", 2014. Displacement control criteria
governed the loading procedure. Lateral load was applied to the pile until the target displacement
was reached. Target displacement ranged from 0.25 to 3.0 inches, with each loading increment
being 0.25 inches. Each target displacement was maintained for a five-minute period between

loading increments. The same test approach was used for all of the piles.

5.1 Load Displacement Curves

Pile head load versus deflection plots for the four tests and the reaction pile are shown in
Figure 5-1 and Figure 5-2. The load curves are based on the hydraulic pressure gauge monitoring
the pressure in the hydraulic jack line. Figure 5-1 shows the peak load applied to the pile versus
pile deflection. The pressure in the pump spiked briefly after reaching the target displacement for
each load cycle. The peak load at each loading increment is the average of several seconds of data
after the highest load was applied. The peak load is likely to only be encountered in situations such
as an earthquake but is probably not representative of static loading conditions. Figure 5-2 shows
the pile head load versus deflection after a five-minute relaxation period and is more likely

representative of static loading conditions caused by thermal expansion and contraction.
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A general comparison of the curves shows that the lateral resistance of the 3.9, 2.9 and
2.8D piles is approximately equal and the resistance of the 1.7D pile is about 70% less than these
piles. The spacing of the 2.9D and 2.8D piles is approximately the same so similar load-deflection
curves are not unexpected. However, the resistance of the 3.9D pile being similar to that of the 2.9
and 2.8D piles is unexpected based on previous testing and research performed by Hatch (2014),
Han (2014), Price (2012), and Nelson (2013). Figure 2-19 indicates that lateral resistance of piles
spaced greater than 3.8D should be approximately the same. Based on the testing, either the
resistance of the 3.9D pile was lower than expected or the resistance of 2.9 and 2.8D piles was
higher than expected. There are several possible explanations for this discrepancy. The night
before the 2.8 and 2.9D piles were tested, a significant rainstorm occurred at the site. The USCS
material classification of SP-SM indicates that there are some fines in the soil (See section 3.1.1)
so perhaps the resistance of the 2.8 and 2.9D tests was increased due to cohesion that added to the
strength of the soil. Both of the tests were performed on the day following the rainstorm.
Furthermore, the water that infiltrated the soil would increase the unit weight of the soil and may
have caused some natural compaction. Another possibility is that the panel configuration varies
from test to test. As shown in Figure 3-2, there is a joint directly in front of the 1.7D and 2.9D
piles while the 2.8D and 3.9D piles are located in the center of a panel. Also, the size of the panels
varies at the top of the wall from tests to test. Perhaps the panel configuration of the 3.9D pile does
not provide as much strength as the panel configuration in the vicinity of the 2.9 and 2.8D piles.
Another possibility is that the compaction around the piles differed. Compaction between the piles
and the wall was done using a vibratory plate compactor. The path of compaction generally was
around the pile, next to the wall, and then in-between piles. Assuming the same number of passes

of the plate compactor occurred between each pile and the wall, the soil between the wall and piles
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on the 2.8 and 2.9D piles would have received more compaction effort than the soil around the
3.9D pile. Although nuclear density testing was performed throughout construction as outlined in
section 3.1.1 of this report, the exact location of all tests is not known and cannot be used to verify
this. We do know; however, that the compaction tests indicated substantial variation in relative
compaction within the zone between the piles and wall panels in comparison with the soil behind
the piles as shown in Table 3-1 and Table 3-2. This variation could account for the observed

inconsistencies.

5.2 Soil Reinforcement Performance

The load in the soil reinforcement was calculated using the strain data. Strain gauges were
applied to both sides of the reinforcement and the average of the values was used. In the case where
one of the gauges was damaged, the strain from the working gauge was used and in cases where
both were damaged, the data point was omitted. The induced load in the reinforcement was
calculated using the following equation:

T, = EA(ue, - e, 10°) (5-1)
where

Ti is the equivalent induced force in kips for the wire strip at the i data point,

E is the modulus of elasticity of the steel strip (29,000 ksi),

A is the cross sectional area of the steel strip (0.31 in?),

uei is the micro strain for the i data point, and

Lo 1s the micro strain for the initial data point just before loading the pile.
The measured tensile force represents only the force induced by the lateral load on the pile and

does not account for the force induced by earth pressure during construction of the wall itself.
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For depths of 45 and 75 inches, the measured load in the soil reinforcement at various
distances behind the back face of the MSE wall is shown in Figure 5-3 and Figure 5-4, respectively.
The load on the reinforcement is shown at several load levels. Both plots are for the 2.9D test and
the transverse distance from the center of the pile to the center of the reinforcement is
approximately 38 in. in both cases. As an additional reference, the nominal tensile resistance based
on FHWA equations (2009) described in section 3.4.2 has been added to the plots. The tensile
force in the reinforcement tends to peak approximately near the center of the pile. The tensile force
increases between the wall and pile and tends to decrease between the pile and the back end of the
reinforcement. Similar plots for the other reinforcements monitored during each test can be found
in Appendix E.

The maximum measured induced load in the reinforcement at each pile head load for the
piles at 1.7, 2.8, 2.9, and 3.9D from the wall is shown in Figure 5-5 through Figure 5-12. In these
figures, Layer 1 designates the shallowest level of reinforcement while Layer 4 indicates the
deepest. Separate figures are provided for strip reinforcements located at close and far distances
measured transverse to the direction of loading relative to the center of the test pile. Transverse
distance for each of the reinforcements relative to the pile is summarized in Table 4-2. All of the
reinforcements underwent testing multiple times and occasionally a residual load was observed in
the reinforcement after unlading the pile. Hence, the non-zero load at zero pile head load is due to
the residual load from previous tests. In general, the following trends in the soil reinforcement
have been observed. The induced tensile force on the reinforcement increases as the load on the
pile increases. The load on the reinforcement increases with depth to the second or third layer,
after which it again decreases. The induced load on the reinforcement decreases as the transverse

distance between the pile and the reinforcement increases. At a given pile load, the induced tensile
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force in the reinforcement increases as pile spacing decreases. These trends seem to be somewhat
dependent on whether there is a vertical joint between the panels directly in front of the pile and

also on the size of the panels at the top of the wall in front of the pile being tested.
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Figure 5-3: Induced loads in the second layer of soil reinforcement at various pile head loads and
distances from the wall. (2.9D test, 38 in. reinforcement transverse spacing).
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Figure 5-4: Induced loads in the third layer of soil reinforcement at various pile head loads and
distances from the wall. (2.9D test, 37 in. reinforcement transverse spacing).
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Figure 5-5: Max tensile force in close soil reinforcement at each pile head load for 1.7D test.
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Figure 5-6: Max tensile force in far soil reinforcement at each pile head load for 1.7D test.
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Figure 5-7: Max tensile force in close soil reinforcement at each pile head load for 2.8D test.
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Figure 5-8: Max tensile force in far soil reinforcement at each pile head load for 2.8D test.
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Figure 5-9: Max tensile force in close soil reinforcement at each pile head load for 2.9D test.
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Figure 5-10: Max tensile force in far soil reinforcement at each pile head load for 2.9D test.
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Figure 5-11: Max tensile force in close soil reinforcement at each pile head load for 3.9D test.

60

50
=
e
= 40
g
— ==L ayer 1, Far
g 30 |
£ =@—Layer 2, Far
= ~—Layer 3, Far
20

=@—Layer 4, Far
10 -
0 " " " " " " " " " " " "
4 6 8 10 12

Max Reinforcement Load [kip]

Figure 5-12: Max tensile force in far soil reinforcement at each pile head load for 3.9D test.
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Figure 5-13 shows an idealized model of what is likely occurring in the reinforcement. The
measured force distribution in the reinforcement suggests that soil in front of the pile is being
pushed forward as the pile is loaded and the soil behind the pile is acting as an anchor for the
reinforcement. Behind the pile, the strip is moving toward the wall relative to the soil. This leads
to decrease tension in the strip behind the pile as load is transferred to the surrounding soil by skin
friction. In front of the pile, forward movement of the soil relative to reinforcement increases the
force in the reinforcement. Positive tensile force in the reinforcement at the wall face is likely a
result of the increased earth pressure on the wall from the pile loading. Occasionally negative
values were observed indicating that the reinforcement is in compression rather than tension. This

is likely the result of bending in the reinforcement caused by uneven movement of the soil.
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Figure 5-13: Interaction of soil and MSE wall reinforcement when pile is laterally loaded.
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5.3 Statistical Analysis of Load in the Reinforcement

Due to the difficulty of predicting loads induced on the soil reinforcement by lateral pile
loading through simple observations and calculations, a statistical analysis of the data was
performed under the direction of Dr. Dennis Eggett of the Statistics Department at BYU. Data
from this study, including data from Phase 1 of testing, and also data from Nelson (2013) were
used to create two different multiple regression models to predict the induced force in the soil
reinforcement. One model uses depth below ground surface (excluding equivalent depth of
surcharge) as a variable while the other uses vertical stress (calculated by adding the surcharge to

the vertical stress from the soil).

5.3.1 Model with Depth as a Variable

Using an F-test, the following variables and their two-way interactions were tested to
determine if they were statistically significant: the displacement of the wall at the location where
the reinforcement attaches to the wall, the transverse distance of the reinforcement to the center of
the pile, the depth of the reinforcement below the ground surface, whether the reinforcement was
attached near the center or edge of a panel, the pile head load, the pile head displacement, whether
the pile being loaded was near a joint or the center of a panel, the normalized pile spacing (distance
of the pile behind the wall), the size of the panel the reinforcement is connected to, the type of
panel the reinforcement is connected to, the applied surcharge, and the L/H ratio of the wall at the
time of testing. Of these parameters, the transverse distance of the reinforcement to the center of
the pile being loaded, the pile head load, the normalized pile spacing, and the depth of
reinforcement or the interactions of these variables were all statistically significant.

Because the tensile force data was not normally distributed, a base 10 log transformation

of the data was applied before running the model. The results of the multiple regression analysis
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are summarized in Table 5-1. It is important to note that these values are based on the log

transformation of the data.

Table 5-1: Multiple regression model results for model with depth as a variable

Coefficient Standard

Parameter Estimate Error t Value | Pr>|t|

Intercept 0.100110702 | 0.046731 2.14 0.0325
Transverse spacing, T -0.004212281 | 0.000810 -5.20 | <.0001
Depth, Z 0.007480573 | 0.000971 7.70 <.0001
Pile load, P 0.025486498 | 0.001532 16.64 | <.0001
Normalized spacing, S/D | -0.051315548 | 0.023390 -2.19 0.0286
T*Z 0.000047877 | 0.000013 3.79 0.0002
T*P -0.000148592 | 0.000023 -6.57 | <.0001
7? -0.000053610 | 0.000006 -8.51 <.0001
Z*(S/D) -0.000709904 | 0.000203 -3.50 0.0005
P? -0.000171253 | 0.000023 -7.49 | <.0001
(S/D)* 0.006191141 | 0.002480 2.50 0.0128

A plot of the predicted tensile force versus measured tensile force in the reinforcement is
provided in Figure 5-14. The black dashed lines in Figure 5-14 show an error of 2 (i.e. the measured
value is double the predicted value and the measured value is half of the predicted value). The R?
value of the model is 0.71, indicating that about 71% of the variation in the reinforcement tensile
force is accounted for by the equation. The standard error is 0.137 (1.103 with log transformation
removed) and the model has 10 degrees of freedom. A plot of the residuals for each of the four
main variables used in the equation is provided in Figure 5-15. The residuals for each of the
variables seem to be scattered evenly around 0 and do not indicate any serious violation of the

model assumptions.
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Figure 5-14: Predicted versus measured tensile force for model with depth as a variable.
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Figure 5-15: Residuals for the variables used in the multiple regression model with depth as a
variable.
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Applying the coefficients found in Table 5-1, the tensile force in the reinforcement can be

predicted using the equation

F=10"(01001-0.0042127+0.0074812+0.02549P — 0.05132%
+4.787x10°TZ —1.486x10* TP -5361x107°Z* —7.099x10~* z% (5-2)

2
—1.713x10‘4P2+0.006191(%J )—1

where
F is the tensile force in the reinforcement in kips,
T is the transverse spacing of the reinforcement from the center of the pile in inches,
Z is the depth of the reinforcement below the ground surface in inches,
P is the pile head load in kips, and
S/D is the normalized pile spacing with S being the distance from the center of the pile to

the back face of the MSE wall and D being the pile diameter.

5.3.2 Model with Vertical Stress as a Variable

An alternative model that uses the vertical stress on the reinforcement rather than the pile
depth was also explored. To calculate the vertical stress, the depth of the reinforcement and the
surcharge were combined. The vertical stress includes the full surcharge applied above the
reinforcement plus the vertical stress due to the soil above the reinforcement. As with the previous
model, the significance of each of the variables and their two way interactions was explored. The
transverse distance of the reinforcement to the center of the pile being loaded, the pile head load,
the normalized pile spacing, and the vertical stress on the reinforcement were all statistically

significant when the interactions were considered.
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As with the other model, a base 10 log transformation of the data was applied before
running the model. The results of the multiple regression analysis that uses vertical stress rather
than depth are summarized in Table 5-2. These values are based on the log transformation of the
data. A plot of the predicted tensile force versus measured tensile force in the reinforcement is
provided in Figure 5-16. The black dashed lines in Figure 5-16 show an error of 2 (i.e. the measured
value is double the predicted value and the measured value is half of the predicted value). The R?
value of the model is 0.69, indicating that about 69% of the variation in the reinforcement tensile
force is accounted for by the equation. The standard error is 0.142 (1.163 with log transformation
removed) and the model has 12 degrees of freedom. A plot of the residuals for each of the four
main variables used in the equation is provided in Figure 5-17. The residuals for each of the
variables seem to be scattered evenly around 0 and do not indicate any serious violation of the

model assumptions.

Table 5-2: Multiple regression model results for model with vertical stress as a variable

Coefficient Standard

Parameter Estimate Error t Value | Pr>[t|

Intercept 0.024991781 | 0.070966 0.35 0.7248
Transverse spacing, T -0.006041202 | 0.001903 -3.18 0.0016
Vertical stress, o 0.000455909 | 0.000093 4.90 <.0001
Pile load, P 0.022340729 | 0.001857 12.03 <.0001
Normalized spacing, S/D | -0.006345214 | 0.024277 -0.26 0.7939
o’ -0.000000194 | 0.000000 -5.19 <.0001
T -0.000060257 | 0.000031 -1.93 0.0542
P? -0.000184272 | 0.000024 -7.62 <.0001
T*oy 0.000003934 | 0.000001 3.48 0.0005
T*P -0.000155229 | 0.000024 -6.55 <.0001
T*(S/D) 0.001073979 | 0.000329 3.27 0.0011
oyv*P 0.000003167 | 0.000001 2.52 0.0118
ov*(S/D) -0.000056329 | 0.000021 -2.71 0.0069
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Figure 5-16: Predicted versus measured tensile force for model with vertical stress as a variable.
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Applying the coefficients found in Table 5-2, the tensile force in the reinforcement can be

predicted using the equation

F=10(0.02499 — 0.0060417+4.559x10* &, +0.02234 P — 0.006345 %

~1.942x1077 0'v2 —6.026x107° 7% —1.843x10~* P* —3.934x10 °To, (5-3)

~1.552x107* TP+O.OOIO74T%+3.167x10‘6P0V ~5.633x10 o, %)—1

where
F is the tensile force in the reinforcement in kips,
T is the transverse spacing of the reinforcement from the center of the pile in inches,
ov is the vertical stress on the reinforcement in psf,
P is the pile head load in kips, and
S/D is the normalized pile spacing with S being the distance from the center of the pile to

the back face of the MSE wall and D being the pile diameter.

5.3.3 Model Parameter Range and Use

The range of values used for each variable in both regression models are presented in Table
5-3. Use of either regression model with values that are outside of the range of the variables
presented in Table 5-3 is considered extrapolation and may cause the model results to be invalid.
It is important to note that the effect of pile diameter was not able to be explored in the analysis
because 12.75 in. diameter pipe piles were used exclusively in all of the tests performed. It is likely
that the diameter of the pile could affect the transverse spacing and the load part of the equation.

More testing to determine the effect of pile diameter will likely be needed in the future.
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Table 5-3: Range of values for each variable applied in the multiple regression models

Parameter Range
Transverse spacing, T 9in. - 73in.
Depth, Z 15in. - 105 in.
Pile load, P 0.4kip - 56.9kip
Normalized spacing, S/D 1 - 638
Vertical stress, oy 272 pst - 1720 psf

5.4 Ground Displacement

The lateral load applied to the pile caused displacement of the ground surface between the
pile and the MSE wall. The horizontal movement of the ground surface was monitored throughout
testing using string potentiometers attached to steel stakes pounded into the ground between the
pile and the wall. Vertical ground displacement was also measured using an optical surveying level
and rod. Vertical ground displacement was measured at 3.0 in. pile head deflection but was not
measured throughout the test for safety reasons.

Figure 5-18 shows the measured vertical ground displacement at 3.0 in. pile head deflection
for all of the tests. In general, the heave at the wall tends to increase as the pile is loaded closer to
the wall. In addition, the general trend is that vertical ground displacement is highest near the pile
face and decreases with distance from the pile face. The 2.8D test is the exception. According to
measurements taken, the soil displaced very little near the pile face and the greatest displacement
was approximately 1 ft. from the pile face. There are several possible explanations for this. Because
the pile was at 3 in. of displacement during the second measurement, the level rod may have been
held at an angle while the second measurement was taken or perhaps the measurement was read
from the rod incorrectly. Assuming the measurement is correct, this discrepancy could be due to

the different panel configuration of the wall in front of the pile. A smaller 2.5x10 ft. panel is located
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at the top of the wall for this test. Rotation of the top of the panel towards the pile was observed
as lateral loading occurred. This may have caused additional compression of the soil between the
pile and the wall and an increase in the soil heave further from the pile. Furthermore, it rained

during this test increasing the uncertainty of the measurement.

Vertical Ground Displacement [in]

0 1 2 3 4 5 6
Distance from Back Face of MSE Wall [ft]
——1.7D —4&—=28D —-#-29D —e—39D

Figure 5-18: Vertical ground displacement for all test piles.

Horizontal ground displacement was greatest near the pile and decreased in a non-linear
fashion with increased distance from the pile to relatively small values at the back face of the wall.
Figure 5-19 is an example of the horizontal ground displacement between the pile and the back
face of the MSE wall for the 2.9D test at several load levels. Horizontal ground displacement
curves for the rest of the tests can be found in Appendix D. As expected, horizontal ground

displacement tends to increase as the displacement of the pile increases. For each of the tests, the
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distance from the pile where each measurement was taken was normalized by the pile diameter
and the measured horizontal ground displacement was normalized by the pile displacement. Figure
5-20 is a plot showing these normalized curves at 3.0 in. of pile displacement. The curve for the
pile at 3.9D suggests that a distance of 3.5 to 4 pile diameters might normally be required to reduce
normalized horizontal displacements to near zero. However, at closer pile spacings, the reinforcing

members appear to resist additional applied forces to reduce displacement at the wall.
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Figure 5-19: Horizontal ground displacement for 2.9D test at several pile head load levels.

Both the 2.8D and 3.9D curves show that normalized ground displacement dropped to near
zero about one pile diameter (1 ft.) from the pile face, followed by a slight increase and then
decrease to approximately zero at the back face of the wall. Both of these piles are located at the
center of a wall panel while the other two are at a joint. A likely explanation is that the steel stakes
that the string potentiometers were attached to rotated backwards slightly due to passive shear
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plane development in front of the pile causing a decrease in measured displacement. The lines
connecting the string potentiometers to the stakes could not be attached at ground level because

space was needed to ensure string potentiometer function was not hindered by ground heave.
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Figure 5-20: Normalized ground displacement.

5.5 Wall Panel Displacement

DIC was used as the primary method of monitoring wall panel displacement. Additionally,
a string potentiometer was attached to the top of the wall to monitor the deflection of the top of
the panel. Four shape arrays placed against the back side of the wall located at various transverse
distances from the pile center were used as an additional method of measuring the deflection of
the wall.

Figure 5-21 and Figure 5-22 show the respective results of the DIC analysis of wall panel
displacement at 0.5 in. and 3.0 in. pile head deflection.
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In both cases, the lateral load of the 2.8D test causes the greatest wall panel displacement.
The higher displacement of the wall panels experienced by the 2.8D test is likely a result of the
smaller 2.5 ft. tall by 10 ft. wide panel located at the top of the wall closest to this pile. This panel
has only one layer of reinforcement located in the middle of the panel. The top of this panel rotated
back towards the pile while the bottom rotated away from the pile, with the reinforcement acting
as a horizontal neutral axis. At 0.5 in. pile head deflection, the maximum displacement observed
for each of the four tests is approximately 0.050 in., and there is little evidence of any distinctive
displacement pattern. This displacement level is likely near the threshold of the DIC system’s
ability to resolve displacement at the distance the cameras were placed from the wall. Based on
the RBMR data, at 3.0 in. pile head deflection, the maximum panel displacement for the 3.9, 2.9,
2.8, and 1.7D tests was 0.18, 0.13, 0.35, and 0.19 in., respectively. The maximum wall deflection
generally occurs near the second layer of soil reinforcement which also generally experienced the
highest induced load.

With the data collected, it is difficult to determine the extent of the zone of influence on
wall displacement caused by the lateral loading of the pile. The cameras for the DIC analysis were
focused on an area of the wall approximately 10 ft. tall by 12 ft. wide. However, the results suggest
that displacement is relatively insignificant beyond 5 to 6 ft. on either side of the loaded pile and
below of depth of about 10 to 12 ft. A review of the displacement contours, suggests that
displacement forms a narrower “columnar” horizontal band for piles loaded at a joint between
panels, but is somewhat broader for the piles loaded in the center of a wall panel. In addition, for
a pile loaded at a joint, the displacement pattern is not always uniform across the joint and one side
will often experience greater displacement than the other. Similarly, the displacements do not

always transfer uniformly with depth and offsets in displacement are also seen across horizontal
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joints. The measurements indicate that the panels also rotated around a vertical axis but it is
difficult to determine if part of the panel went backward or if it all came forward. There are
different options in the software used to reduce the DIC images that allows different types of
displacement to be calculated. One option is to calculate raw displacement in the x, y, or
z-direction, with the z-direction being out-of-plane. It should be noted that when using this option,
any movement relative to the initial position of the cameras is added to the total displacement,
even if the movement is caused by the camera being moved. Another possibility is to use the Rigid
Body Motion Removed (RBMR) option. This option only calculates displacements that are due to
bending or distortion of an object. For example, if the camera were moved towards the wall but no
bending or distortion of the wall occurred, this would show up as zero displacement. While this
option seems like the best available option within the software to correct movement caused by
wind or the camera settling, we observed that the cameras were not focused on a large enough area
of the wall for the software to properly remove any rigid body motion and near the corners of the
images negative deflections may be shown. These deflection are likely a result of the correction
algorithm and not real. Hence, it is difficult to determine the extent of negative deflection that
actually occurred when panels rotated. As shown in Figure 4-2, the DIC cameras were hooked to
a tripod and there was wind blowing during most of the tests. Additionally, there was rain that
caused some settlement of the tripod legs that were resting on the native soil. It would likely have
been best to attach the camera to a more secure reference frame such as a concrete block that had
been allowed to settle prior to testing so that the total z-displacement option could be used without
the need of removing displacements caused by movement of the cameras. However, because some
movement of the cameras did occur, a correction was determined for each time step. To determine

the amount of deflection caused by movement of the camera versus actual deflection of the wall,
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the z-displacement at each of the corners of the DIC images was analyzed. At a transverse distance
of approximately 5.5 ft., very little movement of the wall should actually be occurring so any
deflection measured by the DIC is probably due to the cameras moving rather than movement of
the wall and could be used as a correction. Furthermore, the deflection should be similar at these
locations if the movement is due to the cameras moving. This behavior was observed for all of the
tests. Within the software used to compute the DIC deflections, there is no option available to
apply this correction however so the RBMR option was used in computation of the wall deflections
shown in Figure 5-21 and Figure 5-22. However, this correction is applied to other displacements
calculated using the DIC data.

The displacement at the location of each instrumented soil reinforcement was extracted
from the DIC data and corrected for any movement of the cameras caused by wind as outlined in
the previous paragraph. Plots of pile head displacement versus the displacement at each of the
instrumented reinforcement locations for the 1.7, 2.8, 2.9, and 3.9D tests are shown in Figure 5-23
through Figure 5-26, respectively. The displacement is shown for both the reinforcement which is
located close to the pile and the one located further from the pile. Additionally, the displacement
at the top of the wall measured by the attached string potentiometer is shown in these plots. The
transverse distance from the center of the pile to the center of the reinforcement can be found in
Table 4-2. The second and third layers of reinforcements generally experienced the highest
displacement at the higher pile head deflections, rather than the top layer. In addition, the
reinforcements closer to the pile deflected somewhat more than the reinforcements further away

in the transverse direction.
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Figure 5-23: Panel displacement at the reinforcement connection location for the 1.7D test.
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Figure 5-24: Panel displacement at the reinforcement connection location for the 2.8D test.
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Figure 5-25: Panel displacement at the reinforcement connection location for the 2.9D test.
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Figure 5-26: Panel displacement at the reinforcement connection location for the 3.9D test.
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Although the curve shapes extracted from the DIC show some unexpected decreases in
reinforcement deflection with increasing pile deflection the reinforcement deflection generally
increases with increasing pile head deflection. The curve shapes do not appear to be flattening out
at higher deflections as would be expected if the reinforcements were reaching their frictional
capacity and pulling out. Despite the large lateral loads (and displacements) imposed on the piles,
the reinforcement displacements were typically less than 0.25 in. in all cases and distress to the
wall face was minimal even for the pile located 1.7D from the wall face.

Shape arrays were also used to monitor the deflection of the wall. Four shape arrays were
placed in electrical conduit running vertically up the back face of the MSE wall at various
transverse distances from the pile for each test. The conduit was secured against the back face of
the MSE wall with duct tape during construction, but some separation of the conduit from the wall
occurred during placement of the backfill. Additionally, the displacement of the top of the wall
was measured by a string potentiometer that was attached to the top of the wall using an eye-bolt.
The displacement measured by the shape array installed approximately in front of each pile being
loaded is compared to the wall displacement at the same location calculated using the DIC data
and to the displacement of the top of the wall measured by the string potentiometers. Figure 5-27

through Figure 5-30 shows this comparison for the 1.7, 2.8, 2.9, and 3.9D tests, respectively.
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Figure 5-27: Comparison of wall displacement measured by the shape arrays to DIC and string
potentiometer data for the 1.7D test at 3.0 in. pile head deflection.
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Figure 5-28: Comparison of wall displacement measured by the shape arrays to DIC and string
potentiometer data for the 2.8D test at 1.75 in. pile head deflection.
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Figure 5-29: Comparison of wall displacement measured by the shape arrays to DIC and string
potentiometer data for the 2.9D test at 3.0 in. pile head deflection.

'\\K\

o N b~ NN O

10 7

/

Depth [ft]
%)

14
16 /

0.00

0.05 0.10 0.15 0.20 0.25
Wall Displacement [in]

===DIC ===Shape Array W String Potentiometer

0.30

Figure 5-30: Comparison of wall displacement measured by the shape arrays to DIC and string
potentiometer data for the 3.9D test at 3.0 in. pile head deflection.
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Overall, the displacements are in good agreement and are likely within the accuracy of the
respective systems. The DIC data has the correction applied as discussed previously in this section.
The worst agreement was for the 1.7D test, with maximum wall displacement being measured as
0.48 in. using the shape arrays and 0.19 in. using DIC. This is likely due to separation of the PVC
conduit from the wall in front of the pile, which allowed additional movement of the conduit with

respect to the wall.

5.6 Pile Performance

Strain on the pile was measured at depths of 2, 4, 6, 9, 12, 15 and 18 ft. At these depths,
gauges were applied to the side of the pile being loaded and the opposite side. The pile moment
was estimated using the data. In the case where one of the gauges was damaged, the strain from
the working gauge was used and in cases where both were damaged, the data point was omitted.

The bending moment in the pile was calculated using the equation
EI 6
Mi = Z((ﬂgn _ﬂgot)_(ygic _ﬂgoc))(lo ) (5-4)

where
M; is the bending moment in inch-kips for the pile at the i™ data point,
E is the modulus of elasticity of the pile (29,000 ksi),
I is the moment of inertia of the pile and the attached angle iron (314 in%),
ueir is the micro strain for the i data point, on the tension side of the pile,
Uéeio 1s the initial micro strain for the tension side of the pile prior to loading,
ueir is the micro strain for the i data point, on the compression side of the pile,
Ué&oc 1s the initial micro strain for the compression side of the pile prior to loading, and

v is the distance separating the two strain gauges measured along the line of loading.
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Several of the piles rotated during driving so the strain gauges were not directly in line with
the load. As shown in Figure 5-31, the rotation of the pile was measured and the distance separating
the gauges in line with the load was calculated and applied to y in Equation (5-4) to account for

the reduced measured strain.

LOAD

STRAIN GAUGE — \

y *f’y \\
L ,(
\\‘E\ /'/‘
Y,

" ANGLE IRON

Figure 5-31: Measurement of y to correct strain measurement for pile rotation.

In spite of the angle iron covering the strain gauges and lead wires on the piles, some of
the lead wires were cut during construction. This occurred for all of the strain gauges on one side
of the 2.8D and 2.9D piles. For both of these piles, multiple wires were cut and it was not possible
to determine their proper match through inspection of the wires. In this case, the strain of the
gauges at unknown locations was compared to the strain measured by gauges at known depths and
the gauges were assigned a location where opposing strains were approximately equal. There were
several instances where both gauges at a given depth were not functioning properly and in this
case, the moment at that depth was not calculated. When only one gauge was functioning, the

strain at that location was doubled.
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Figure 5-32 through Figure 5-35 are plots of bending moment in the pile versus depth
below the ground surface for the four piles tested. The moment is given at several pile head loads
for each test. The moment peaks at various depths ranging from 4 to 7 ft. The peak moment
generally occurs at deeper depths as pile spacing decreases with the exception of the 1.7D test.
This may be due to damaged strain gauges. Only one gauge was functioning at depths of 2, 6, and
9 ft., and neither gauge at 4 ft. was functioning. For a given load, the moment tends to be highest
for the pile spaced furthest behind the wall and decreases as spacing of the piles decreases. This
may be due to a softer response of the soil and wall as spacing decreases. The load applied to the
pile may be distributed deeper in the profile rather than being focused at the top of the pile, causing
less and a lower moment. This is also consistent with the observation that the observed moment

tends to occur deeper as pile spacing decreases.
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Figure 5-32: Moment versus depth for various loads on the 1.7D test.
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Figure 5-34: Moment versus depth for various loads on the 2.9D test.
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Figure 5-35: Moment versus depth for various loads on the 3.9D test.

Curves showing pile head load versus rotation of the tip of the pile for the four tests and
the reaction pile are shown in Figure 5-36. The load for the curves is based on the hydraulic
pressure gauge monitoring the pressure in the hydraulic jack line one minute after the target
displacement was reached. The rotation of the pile head was calculated based on the string
potentiometers at the load point and 3 ft. above the load point using the equation

d,, —d
0=Sil’1_1 M (5-5)
36in

where

@ is the pile head rotation,
d3 1s the pile displacement 3 ft. above the load point, and

dip is the pile displacement at the load point.
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The rotation of the pile tended to increase as the load increases for all of the tests. The pile
head load versus pile head rotation curves are all very similar for the 3.9, 2.9, and 2.8D tests, just
as the load displacement curves are for these tests. At a given load, the rotation of the pile tends to
be lower for the 1.7D test indicating that less bending of this pile is occurring than it is for the

other tests which is also consistent with the lower observed pile moment.
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Figure 5-36: Pile head load versus rotation of the tip of the four test piles and the reaction pile.
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6 LATERAL PILE LOAD ANALYSIS

To be more useful for a broad range of applications, the results of these tests were modeled
in LPILE, a computer program commonly used to analyze laterally loaded piles. LPILE is a finite
difference program that uses the p-y method. With the p-y method, the soil surrounding the pile is
modeled as a series of springs at various depths along the pile. The spring stiffness varies
nonlinearly with displacement. The displacement of a pile at any depth at a given lateral load can
be determined through an iterative approach using this method. Soil type and state, pile geometry,
and loading method can all cause variation of the pile displacement at any given lateral pile load.
Hence, various p-y curves are necessary for different types of soil. LPILE computes deflection,
bending moment, shear force, and soil response over the length of the pile. Various options are
available within the program for determining p-y curves based on different soil types. The accuracy
of the analysis depends on how accurately the reaction of the soil is modeled by the p-y curve. The
API Sand (1982) method built into LPILE seems to model the backfill used for the wall reasonably
well and is used for lateral load analysis of the piles in these tests. The API method was also the
method used by Price (2012), Nelson (2013), Hatch (2014), and Han (2014) in their analyses so
this approach is consistent with their work.

The pile located 3.9 pile diameters from the wall was assumed to have no interaction with
the wall based on previous research performed by Price (2012) and Nelson (2013). This pile was

used to calibrate the soil parameters used in the LPILE model. The displacement of the pile head
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at any given load is dependent on the soil moist unit weight, y; friction angle, ¢; and the modulus
of subgrade reaction, k; all of which are assumed to be the same for all tests. The unit weight was
known from field testing described previously. Initial estimates of friction angle and subgrade
reaction were made based on relative density estimated from the relative compaction. The friction
angle and subgrade reaction were then varied until the predicted load versus displacement of the
pile head matched the measured load versus displacement. After the soil friction angle and
subgrade reaction which modeled the soil correctly were determined, a p-multiplier (less than 1)
was applied to the p-y curve to account for the reduced resistance of the piles closer to the wall.
This analysis allows the results of these tests to be more useful for a broad range of
applications. Designers can create an LPILE model based on their soil and pile type and use the
reduction curves to determine proper multipliers to use based on the distance of the pile behind the
wall. The use of this approach is based on the assumption that a similar reduction in lateral
resistance is expected for other pile sizes and types, soil types, wall panel types, and so on.
Additional tests with larger diameter piles will likely be necessary to confirm this assumption in

the future.

6.1 Material Properties

Table 6-1 is a list of input parameters for the pile and their respective values used in the
LPILE analysis. The pile was modeled as a linear elastic material. After running the analysis, this
assumption was checked and it was found that the stress on the piles reached the yield point from
2.5 to0 3.0 in. pile head deflection depending on the pile. However, after updating the model for the
3.9D pile, the analysis showed that the predicted deflection changes less than 2% at 3.0 in. pile
head deflection so the linear elastic model of the pile was still used. The pile moment of inertia

and cross-sectional area were calculated for the pile including the angle iron tack welded to the
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pile to protect the strain gauges. A pinned head load condition was used in the analysis consistent
with the field loading condition. Loads were applied 12 in. above the ground surface and were the
measured loads from the analysis. The piles were modeled as hollow sections despite being driven
open ended. The piles eventually plugged with soil; however, the soil plugs were generally limited
to a zone about 12 ft. from the pile tip leaving the upper 28 ft. of the pile hollow. Therefore, for
practical purposes, the section of the pile interacting with soil was acting as a hollow section and

the plugged section was deep enough to have no effect on the results.

Table 6-1: Pile properties for LPILE analysis
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The soil friction angle, modulus of subgrade reaction, and soil effective unit weight are the
required inputs for the API Sand method in LPILE. Figure 6-1 shows the API soil subgrade
reaction correlated to relative density or to soil friction angle. Curves are provided for sand above
and below the water table. The backfill was above the water table so the curve representing sand
above the water table was used. To determine the correct friction angle and subgrade reaction to
represent the soil, a friction angle was initially estimated and the corresponding subgrade reaction
was read from Figure 6-1. If the displacements were too high for a known pile load based on
measured load deflection curves, a higher friction angle and subgrade reaction were chosen and
vice versa. This process was repeated until the predicted deflection at measured loads matched the

measured deflection.
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As described in section 3.1.2, a 600 psf surcharge was applied behind each pile using
concrete blocks to simulate a 5-ft. high bridge abutment behind the wall. LPILE does not have the
option to apply an asymmetric soil profile, so there was no way to model the surcharge as it was
applied during the testing. Although the surcharge was not in front of the pile during loading, the
spreading of the load with depth is likely to have caused additional resistance deeper in the profile.
In an attempt to model the surcharge, a layer of soil with a 2400 pcf unit weight, 3 in. thick, was
applied to the top of the profile. The user defined p-y option was applied to this layer in a manner
that the layer would provide no lateral resistance but only additional vertical stress on the
underlying layers. The reinforced backfill was modeled using the API Sand approach, and the
friction angle was found to be 31 degrees with a modulus of subgrade reaction of approximately
60 pci. The underlying native soil was also modeled using the API sand approach with a friction
angle of 34 degrees, however, the analysis is unaffected by the soil properties at this depth. Table
6-2 summarizes the soil properties used in the analysis when the surcharge was modeled in LPILE.
Two LPILE models of each of the piles were created, one attempting to simulate the 600 psf
applied surcharge and one in which no attempt to simulate the surcharge was made. Table 6-3
summarizes the soil properties used in the analysis when no attempt was made to model the
surcharge. The same analysis was performed as described previously and the back-calculated
friction angle for the reinforced soil was found to be 39 degrees with a subgrade reaction of 260
pci. In reality, the actual stress in the soil profile caused by the 600 psf surcharge would be
somewhere between these two cases so the friction angle is somewhere between 31 and 39 degrees
and the subgrade reaction is between 60 and 260 pci. This range of friction angles is reasonable
for the backfill material based on the backfill estimated relative density of 50% (See section 3.1.1)

and the friction angles corresponding to various relative density shown in Figure 6-1.
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Figure 6-1: Soil modulus reaction based on soil friction angle or relative density (API, 1982).

Table 6-2: Soil properties used in LPILE analysis with simulated surcharge

Eff. Unit | Friction p-y
Depth Soil type weight,y | angle, ¢ | modulus, k
[ft] Description | (p-y model) [pef] [deg] [pei]
User
0.75-1 Surcharge defined 2400 0 0
Reinforced API Sand
1-21 fill (O'Neil) 127.8 31 60
Underlying API Sand
21-40 ) ative soil | (O'Neil) 125 34 100
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Table 6-3: Soil properties used in LPILE analysis with surcharge not simulated

Eff. Unit | Friction p-y
Depth Soil type weight, v | angle, ¢ | modulus, k
[ft] Description | (p-y model) [pef] [deg] [pci]
Reinforced API Sand
1-21 Fill (O'Neil) 127.8 39 260
Underlying API Sand
21-40 native soil (O'Neil) 125 34 100

6.2 Results of LPILE Analysis

The computed load-deflection curves were compared to measured load-deflection curves
for each pile and used to calibrate an LPILE model for each pile tested and determine appropriate
p-multipliers for the piles spaced closer to the wall than approximately 3.8D. LPILE also computes
pile bending moment and rotation, both of which are compared to measured results as another

check to ensure that the LPILE model is correct.

6.2.1 Load-Deflection Curves

Figure 6-2 shows the final load-deflection curves computed by LPILE compared to the
measured load-deflection curves. Two LPILE predicted curves are shown, one for the case without
the surcharge modeled (q=0 psf) and one for the case when the surcharge is modeled (qg=600 psf).
The measured load-deflection curves are based on the average of 30 seconds of data starting one
minute after the peak load was reached for each target deflection. Table 6-4 gives the back-
calculated p-multiplier determined for each test based on the LPILE model without the surcharge
modeled, as has been done in previous research. It was found that a p-multiplier of 1 was most
appropriate for the 3.9, 2.9 and 2.8D tests and a p-multiplier of 0.5 was used for the 1.7D test.

Although the load deflection curve predicted by LPILE does not fit the measured curve very well,
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the R? value was lowest using a p-multiplier of 0.5 (R?=0.86). Only one computed curve is shown
for the 3.9 through 2.8D tests because the p-multiplier is 1 and the load-deflection curves are all
approximately identical. For all four of the piles tested, the LPILE model with the surcharge
simulated matches the measured results slightly better than the model without the surcharge.
Overall, the predicted and measured load-deflection curves match very well. For the 1.7D test, the
predicted LPILE curve with the simulated surcharge only matches for the first 0.25 in. of pile
displacement. After that, LPILE predicts a stiffer response out to approximately 1.5 in. of pile
displacement, after which the response softens and the curve begins to level out. The measured
curve shows that the response is approximately linear, at least to the extent of the displacements
measured. This may be an indication that the actual response is governed by the resistance the soil
reinforcement is providing rather than by the resistance of the soil. This would indicate that the
full resistance of the soil reinforcement has not been mobilized at the peak measured displacement.
Another possibility is that the soil around the pile was loose and compacted due to the pressure
applied from the lateral pile load causing the soil to become progressively stronger which could

also lead to the more linear curve shape.

Table 6-4: P-Multipliers for each test

Pile P-multiplier
1.7D 0.5
2.8D 1.0
2.9D 1.0
3.9D 1.0
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Figure 6-2: Comparison of load versus deflection curves computed by LPILE to measured load-
deflection curves.

The reason why the load deflection curves are nearly identical for the 3.9, 2.9, and 2.8D
tests is unknown. The spacing of the 2.9 and 2.8D piles behind the wall is similar enough that
similar load deflection curves are expected. However, according to previous research, the
p-multiplier for a pile spaced at these distances should be approximately 0.9 compared to the pile
spaced at 3.9D (See Figure 2-19). The p-multiplier for the 1.7D test is also higher than expected.
A p-multiplier of 0.5 provided the best overall calibration of the model while a multiplier of 0.3 is
expected based on previous research. If the lateral resistance of the 3.9D pile had been higher, the
p-multipliers for the other tests would have been reduced. A comparison of all the pipe piles tested
during this research indicates that the strength of the 3.9D test is similar to the other pipe piles at

similar distances behind the wall as shown in Figure 6-3 while the three piles spaced at 2.9, 2.8,
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and 1.7 diameters have a higher lateral resistance than other pipe piles tested at similar spacing as
shown in Figure 6-4 and Figure 6-5. The reason for the higher resistance of the 2.9, 2.8, and 1.7D
may be the soil compaction was higher for these piles. Compaction between the piles and the wall
was performed using a vibratory plate compactor. The path of compaction generally was around
the pile, next to the wall, and then in-between piles. Assuming the same number of passes of the
plate compactor occurred between each pile and the wall, the soil between the wall and piles on
the 1.7, 2.8, and 2.9D piles would have received more compaction effort than the soil around the
3.9D pile. Although nuclear density testing was performed throughout construction as outlined in
the section 3.1.1 of this report, the exact location of all tests is not known. In addition, as indicated
in section 3.1.1, the scatter in the relative compaction data for the zone between the piles and the
wall exhibited considerable variation. Another possible reason for the higher resistance of these
piles is the night before the 2.8 and 2.9D piles were tested, a significant rainstorm occurred at the
site. The USCS material classification of SP-SM indicates that there are some fines in the soil,
(See Appendix B. Geneva Rock Laboratory Test Reports) so perhaps the resistance of the 2.8 and
2.9D tests was increased due to cohesion that added to the strength of the soil. Both of the tests
were performed on the day following the rainstorm. Furthermore, the water that infiltrated the soil

would increase the unit weight of the soil and may have caused some natural compaction.
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Figure 6-3: Comparison of load versus displacement curves for the 3.9D pile to other piles at
similar spacings tested during this study.
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Figure 6-4: Comparison of load versus displacement curves for the 2.8D pile to other piles at
similar spacings tested during this study.
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Figure 6-5: Comparison of load versus displacement curves for the 1.7D pile to other piles at
similar spacings tested during this study.

6.2.2 P-Multipliers versus Pile Spacing Curves

Figure 6-6 is a plot of the p-multipliers for this test and also all other p-multipliers to date
for steel pipe piles near MSE walls with metallic reinforcing. The distance from the back face of
the MSE wall to the center of the pile has been normalized by the pile diameter allowing the curve
to be used for a broad range of pile sizes at various spacings. The diameter of piles for these tests
ranged from 12.75 to 16.0 inches. The soil reinforcing used by Hatch (2014) and Price (2012) was
galvanized welded wire grids and the soil reinforcing used by Han (2014), Nelson (2013), and in
this test was galvanized ribbed steel strips. The L/H ratio varied between 0.72 for this test to 1.2
for some of the tests done by Nelson (2013). A p-multiplier of 1.0 indicates that there is no
interaction between the pile and the MSE wall and a p-multiplier lower than 1.0 is used to account

for reduced resistance of piles located closer to the wall.
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Figure 6-6: P-multiplier curve versus normalized distance from the wall from this study in
comparison with previous test results.

As part of this study, a linear regression analysis was performed to develop a relationship
between the back-calculated p-multipliers from available tests and the normalized pile spacing
(S/D) behind the wall. Only data with an S/D value less than four were used in the regression
analysis. The data suggest that piles with normalized spacings greater than four typically had
p-multipliers of 1.0 indicating that there was no adverse effect arising from the presence of the
wall. A total of 15 data points with an S/D less than four were available for developing the
correlation. The best-fit relationship for the p-multiplier, pmut, was given by the linear equation

Pou =0335-020  for D <36 and (6-1a)

Do =1.0 for S/D>3.6 (6-1b)

where
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pmuie 1s the p-multiplier,
S is the distance from the center of the pile to the back face of the MSE wall, and

D is the pile diameter.

Equation (6-1) has a R? value of 0.80 indicating that about 80% of the variation in the p-multiplier
is accounted for by the equation.

The bi-linear equation predicted by Equation (6-1a) is plotted along with the data points in
Figure 6-6. The p-multipliers from this study and the previous studies generally scatter about the
best fit line, although the results from this study are somewhat higher than other results.
Nevertheless, the results are not unreasonable considering the variation in relative compaction that
apparently develops with low levels of compactive energy near the MSE wall face. These results
suggest that the p-multiplier versus S/D curve is relatively insensitive to the L/H ratio for the
various MSE walls as well as the reinforcing type (strip versus welded wire grid). This result
indicates that a single p-multiplier equation (Equation 6-1) may provide reasonable predictive

power for a range of MSE wall types and geometries.

6.2.3 Pile Head Load versus Rotation Curves

The rotation of the pile was measured using data from string potentiometers attached to the
pile as described in section 4.2. Figure 6-7 and Figure 6-8 show the measured values compared to
those predicted by LPILE for the 1.7 and 2.9D tests. The results are shown for the LPILE model
with and without the simulated surcharge. The results of the pile head rotation predicted by LPILE
are very close to measured values. The worst agreement is for the 1.7D test. This is expected
because the predicted load-displacement curve was also the worst for the 1.7D pile. The agreement

between the 2.8 and 3.9D tests is very similar to that of the 2.9D test.
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Figure 6-7: Comparison of pile head load versus rotation curves computed by LPILE to measured
pile head load versus rotation curves for the 1.7D test.
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Figure 6-8: Comparison of pile head load versus rotation curves computed by LPILE to measured
pile head load versus rotation curves for the 2.9D test.
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6.2.4 Bending Moment versus Depth Curves

Bending moment versus depth curves for each of the piles was computed using strain gauge
data as described previously. The measured bending moment is compared to the bending moment
computed by the LPILE model with and without the simulated surcharge, q, for each of the test
piles. Figure 5-32 through Figure 5-35 show this comparison at two different pile head loads for

each test. The same soil profiles were used in LPILE as discussed in section 6.1.
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Figure 6-9: Measured and computed pile bending moment at multiple pile head load levels for the
1.7D test.
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Figure 6-10: Measured and computed pile bending moment at multiple pile head load levels for the

2.8D test.
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Figure 6-11: Measured and computed pile bending moment at multiple pile head load levels for the
2.9D test.
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Figure 6-12: Measured and computed pile bending moment at multiple pile head load levels for the
3.9D test.

The agreement of the results varies between each test and pile head load. The depth of the
maximum moment predicted by LPILE is within 2 ft. of the measured for all the tests except the
1.7D test and the predicted maximum moment is within 25% of the computed maximum moment
for the 2.8, 2.9, and 3.9D tests and within 40% of 1.7D test. The relatively poor prediction of
maximum moment is consistent with the fact that the load-deflection curve for this case was not
well predicted in comparison with the other test piles. Overall, the LPILE model with the simulated

surcharge does not seem to clearly match the measured curve better than the model without the

applied surcharge in this case.
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7 CONCLUSION

Piles used to support bridge abutments are commonly located within the reinforced zone
of MSE walls and are subject to lateral loading from earthquakes and thermal expansion and
contraction. Full scale lateral load testing was performed on 12.75x0.375 pipe piles spaced at 3.9,
2.9, 2.8, and 1.7 pile diameters behind an MSE wall which was constructed for this research to
determine appropriate reduction factors for lateral pile resistance based on pile spacing behind the
back face of the wall. Galvanized ribbed steel strips were used as the reinforcement for the MSE
wall in the vicinity of the four piles discussed in this report. The relationship between lateral pile
load and induced load on the soil reinforcement was also investigated through instrumentation of
four layers of soil reinforcement located near the laterally loaded piles. Based on data gathered in
this research in combination with previous testing and research the following conclusions can be
made. The conclusions are primarily limited to the type of wall tested but may be applied to other

situations using engineering judgment.

7.1 Conclusions Relative to Lateral Pile Resistance
1. Lateral pile resistance tends to decrease as spacing from the back of the MSE wall
decreases.
2. In general, piles spaced further than 3.8D behind the MSE wall can be assumed to have

no reduction in lateral resistance because of interaction with the wall. However, the
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resistance of piles spaced closer to the wall than 3.8D can be modeled in LPILE using
a p-multiplier less than 1.0 that varies linearly with spacing from the wall.

3. P-multipliers for the 3.9D, 2.9D, 2.8D, and 1.7D tests are 1.0, 1.0, 1.0, and 0.5,
respectively. These multipliers are higher than expected based on previous testing and
research and are likely a result of increased compactive effort near the 2.9D and 2.8D
piles. These results indicate the importance of consistent compactive effort for the soil
between the pile and the wall in evaluating lateral pile resistance.

4. The p-multiplier versus normalized spacing relationships were relatively unaffected by
the reinforcement length to height (L/H) ratio or the reinforcement type (ribbed strip
versus welded wire).

5. The reinforced backfill can be modeled in LPILE using the API Sand (1982) method
with a friction angle of 31 degrees and a subgrade modulus of approximately 60 pci
when a uniform surcharge of 600 psf is applied. If no surcharge is applied, a friction

angle of 39 degrees and subgrade modulus of 260 pci is more appropriate.

7.2 Conclusions Relative to Force Induced in the Reinforcements

1. Induced load in reinforcement tends to increase with depth to the 2™ or 3™ layer of
reinforcement after which it decreases.

2. Induced load in the reinforcement tends to increase as pile spacing decreases.

3. Induced load in the reinforcement decreases rapidly with increased transverse distance
from the pile.

4. The tensile force induced in the reinforcement can be estimate using a regression
equation which considers the influence of pile load, pile spacing behind the wall,

reinforcement depth or vertical stress on the reinforcement, and transverse spacing of
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the reinforcement. The R? value for the model is approximately 0.70, indicating that
about 70% of the observed variation is accounted for by the equation.

5. Despite the relatively high applied lateral loads and pile displacements, the
reinforcements were successful in reducing lateral wall displacements to acceptable
levels for all of the tests. Max wall panel displacement was highest for the 2.8D test
and reached 0.35 in. at 3.0 in. of pile head displacement. The max wall displacement
at 3.0 in. of pile head displacement was similar for all of the other tests but was only

approximately 0.15 to 0.20 inches.

7.3 Recommendations for Further Research

A pinned head loading condition was used for all lateral load tests. In reality, piles
supporting a bridge abutment generally have a concrete pile cap which prevents rotation of the pile
head. It seems likely that lateral loads the pile can sustain and loads induced in the reinforcement
at various depths would be affected by the amount the pile head is able to rotate. Furthermore, the
pile cap causes all of the piles to be loaded simultaneously. Studies have shown that the resistance
of piles loaded as a group have reduced resistance (Rollins et al. 2006), but it is not known if the
same reduced resistance can be applied to piles near a wall face. All tests completed for this
research consisted of static loading conditions and only one cycle was used. In an earthquake,
loading would be applied more quickly and would be cyclic. Also, loading from thermal expansion
and contraction is cyclic. Hence, it would be beneficial to establish the response of pile lateral
resistance when subject to cyclic loading conditions.

Nelson (2013) found that the presence of a lightly compacted free drainage gravel layer
near the wall reduced the lateral resistance of piles. A similar conclusion can be reached assuming

that the higher resistance of the 2.8 and 2.9D tests from this research was caused by higher
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compaction of the soil between the wall and the piles. Hence, soil compaction appears to play a
very important role in the lateral resistance and should be studied further.

It is likely that wall panel configuration near the pile being tested has an effect on the pile
lateral resistance and on total panel displacement, especially for piles spaced closer than about 4D.
It is difficult to determine the relationship from this research because the panel configuration was
different for each test as well as the pile spacing. Additional research could be performed to

determine if additional reduction factors are necessary based on panel configuration.
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APPENDIX A. FACTOR OF SAFETY AGAINST PULLOUT CALCUALTIONS
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APPENDIX B. GENEVA ROCK LABORATORY TEST REPORTS
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Phase 1

GENEVA ROCK PRODUCTS, INC.
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Phase 2

GENEVA ROCK PRODUCTS,; INC.
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APPENDIX C. LOAD DISPLACEMENT CURVES
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Figure C-1: Load-deflection curves for 1.7D test.
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Figure C-2: Load-deflection curves for 2.8D test.
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Figure C-3: Load-deflection curves for 2.9D test.
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Figure C-4: Load-deflection curves for 3.9D test.
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APPENDIX D. GROUND DISPLACEMENT CURVES
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Figure D-1: Horizontal ground displacement at several load levels for 1.7D test.
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Figure D-2: Horizontal ground displacement at several load levels for 2.8D test.
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Figure D-3: Horizontal ground displacement at several load levels for 2.9D test.
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Figure D-4: Horizontal ground displacement at several load levels for 3.9D test.
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Figure D-5: Vertical ground displacement at peak pile load for 1.7D test.
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Figure D-7: Vertical ground displacement at peak pile load for 2.9D test.
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APPENDIX E. INDUCED FORCE IN THE REINFORCEMENT CURVES

1.7D Soil Reinforcement Curves

Reinforcement Load [kips]

4 6 8 10 12 14
Distance from Back Face of MSE Wall [ft]

16 18

—x*—41.8 kip load — # -28 kip load —&— 15 kip load —x- -9 kip load

FHWA

Figure E-1: Induced force in soil reinforcement at varying pile head loads and distances from the
back face of the MSE wall for the 1.7D test; 15 in. depth and 9.5 in. transverse spacing from center

of pile.
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—#—41.8 kip load - ¢ - 28 kip load —¢— 15 kip load —x- -9 kip load

Figure E-2: Induced force in soil reinforcement at varying pile head loads and distances from the
back face of the MSE wall for the 1.7D test; 15 in. depth and 35 in. transverse spacing from center

of pile.
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Figure E-3: Induced force in soil reinforcement at varying pile head loads and distances from the
back face of the MSE wall for the 1.7D test; 45 in. depth and 11 in. transverse spacing from center
of pile.
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Figure E-4: Induced force in soil reinforcement at varying pile head loads and distances from the
back face of the MSE wall for the 1.7D test; 45 in. depth and 37.5 in. transverse spacing from center
of pile.
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Figure E-5: Induced force in soil reinforcement at varying pile head loads and distances from the
back face of the MSE wall for the 1.7D test; 75 in. depth and 9 in. transverse spacing from center of

pile.
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Figure E-6: Induced force in soil reinforcement at varying pile head loads and distances from the
back face of the MSE wall for the 1.7D test; 75 in. depth and 36 in. transverse spacing from center

of pile.
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Figure E-7: Induced force in soil reinforcement at varying pile head loads and distances from the
back face of the MSE wall for the 1.7D test; 105 in. depth and 9 in. transverse spacing from center
of pile.
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Figure E-8: Induced force in soil reinforcement at varying pile head loads and distances from the
back face of the MSE wall for the 1.7D test; 105 in. depth and 35 in. transverse spacing from center
of pile.
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2.8D Soil Reinforcement Curves
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Figure E-9: Induced force in soil reinforcement at varying pile head loads and distances from the
back face of the MSE wall for the 2.8D test; 15 in. depth and 24.5 in. transverse spacing from center
of pile.
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Figure E-10: Induced force in soil reinforcement at varying pile head loads and distances from the
back face of the MSE wall for the 2.8D test; 15 in. depth and 50 in. transverse spacing from center
of pile.
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Figure E-11: Induced force in soil reinforcement at varying pile head loads and distances from the
back face of the MSE wall for the 2.8D test; 45 in. depth and 20.5 in. transverse spacing from center

of pile.
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Figure E-12: Induced force in soil reinforcement at varying pile head loads and distances from the
back face of the MSE wall for the 2.8D test; 45 in. depth and 47 in. transverse spacing from center

of pile.
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Figure E-13: Induced force in soil reinforcement at varying pile head loads and distances from the
back face of the MSE wall for the 2.8D test; 75 in. depth and 22.5 in. transverse spacing from center

of pile.
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Figure E-14: Induced force in soil reinforcement at varying pile head loads and distances from the
back face of the MSE wall for the 2.8D test; 75 in. depth and 49.5 in. transverse spacing from center

of pile.
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Figure E-15: Induced force in soil reinforcement at varying pile head loads and distances from the
back face of the MSE wall for the 2.8D test; 105 in. depth and 23.5 in. transverse spacing from
center of pile.
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Figure E-16: Induced force in soil reinforcement at varying pile head loads and distances from the
back face of the MSE wall for the 2.8D test; 105 in. depth and 50 in. transverse spacing from center

of pile.
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2.9D Soil Reinforcement Curves
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Figure E-17: Induced force in soil reinforcement at varying pile head loads and distances from the
back face of the MSE wall for the 2.9D test; 15 in. depth and 10 in. transverse spacing from center
of pile.
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Figure E-18: Induced force in soil reinforcement at varying pile head loads and distances from the
back face of the MSE wall for the 2.9D test; 15 in. depth and 35.5 in. transverse spacing from center
of pile.
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Figure E-19: Induced force in soil reinforcement at varying pile head loads and distances from the
back face of the MSE wall for the 2.9D test; 45 in. depth and 12 in. transverse spacing from center
of pile.
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Figure E-20: Induced force in soil reinforcement at varying pile head loads and distances from the
back face of the MSE wall for the 2.9D test; 45 in. depth and 38 in. transverse spacing from center
of pile.

139

www.manharaa.com




—_
N O N

& o

Reinforcement Load [kips]
W

/

P
/

N

\
*
|

4 6 8 10 12 14

Distance from Back Face of MSE Wall [ft]
—#—55.6 kip load — ¢ -43.5 kip load ——26.9 kip load
—x- =16.5 kip load FHWA

Figure E-21: Induced force in soil reinforcement at varying pile head loads and distances from the
back face of the MSE wall for the 2.9D test; 75 in. depth and 11.5 in. transverse spacing from center

of pile.
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Figure E-22: Induced force in soil reinforcement at varying pile head loads and distances from the
back face of the MSE wall for the 2.9D test; 75 in. depth and 37 in. transverse spacing from center
of pile.
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Figure E-23: Induced force in soil reinforcement at varying pile head loads and distances from the
back face of the MSE wall for the 2.9D test; 105 in. depth and 10.5 in. transverse spacing from center
of pile.
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Figure E-24: Induced force in soil reinforcement at varying pile head loads and distances from the
back face of the MSE wall for the 2.9D test; 105 in. depth and 38 in. transverse spacing from center
of pile.
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3.9D Soil Reinforcement Curves
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Figure E-25: Induced force in soil reinforcement at varying pile head loads and distances from the
back face of the MSE wall for the 3.9D test; 15 in. depth and 26 in. transverse spacing from center
of pile.
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Figure E-26: Induced force in soil reinforcement at varying pile head loads and distances from the
back face of the MSE wall for the 3.9D test; 15 in. depth and 51 in. transverse spacing from center of
pile.
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Figure E-27: Induced force in soil reinforcement at varying pile head loads and distances from the
back face of the MSE wall for the 3.9D test; 45 in. depth and 22.5 in. transverse spacing from center
of pile.
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Figure E-28: Induced force in soil reinforcement at varying pile head loads and distances from the
back face of the MSE wall for the 3.9D test; 45 in. depth and 49 in. transverse spacing from center
of pile.
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Figure E-29: Induced force in soil reinforcement at varying pile head loads and distances from the
back face of the MSE wall for the 3.9D test; 75 in. depth and 24.5 in. transverse spacing from center
of pile.
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Figure E-30: Induced force in soil reinforcement at varying pile head loads and distances from the
back face of the MSE wall for the 3.9D test; 75 in. depth and 50 in. transverse spacing from center
of pile.
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Figure E-31: Induced force in soil reinforcement at varying pile head loads and distances from the
back face of the MSE wall for the 3.9D test; 105 in. depth and 24.5 in. transverse spacing from
center of pile.
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Figure E-32: Induced force in soil reinforcement at varying pile head loads and distances from the
back face of the MSE wall for the 3.9D test; 105 in. depth and 51.5 in. transverse spacing from
center of pile.
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APPENDIX F.

PILE DRIVING BLOWCOUNTS

Table F-1: Pile driving blowcounts at various depths for each of the test piles

Depth N (blowcount)

(ft) 1.7D 2.8D 2.9D 3.9D
1

2

3 2

4 1

5 1

6 1 2
7

8 2 1

9 2 1 2
10 1 2 1 1
11 1 1 2 3
12 1 2 5 3
13 3 6 5 5
14 5 5 5 5
15 6 4 5 4
16 4 4 4 2
17 4 1 1 2
18 2 2 3 3

Total 30 30 36 32
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